
Deadlock detection of Java Bytecode
Abel Garcia and Cosimo Laneve

Dept. of Computer Science and Engineering, University of Bologna – INRIA Focus
cosimo.laneve@unibo.it

Abstract
This paper presents a powerful technique for deadlock detection of Java programs. The technique
uses typing rules for extracting infinite-state abstract models of the dependencies among the
components of the Java intermediate language – the Java bytecode. Models are subsequently
analysed by means of an extension of a solver that we have defined for detecting deadlocks in
process calculi. Our technique is complemented by a prototype verifier that also covers most of
the Java features.

Digital Object Identifier 10.4230/LIPIcs...

1 Introduction

Deadlocks are common flaws of concurrent programs that occur when a set of threads are
blocked because each one is attempting to acquire a lock held by another one. Such errors
are difficult to detect or anticipate, since they may not happen during every execution, and
may have catastrophic effects for the overall functionality of the software system. At the
time of writing this paper, the Oracle Bug Database1 reports more than 40 unresolved bugs
due to deadlocks, while the Apache Issue Tracker2 reports around 400 unresolved deadlock
bugs. These two databases refer to programs written in Java, a mainstream programming
language in a lot of domains, such as web and cloud applications, user applications and
mobile applications.

The objective of our research is to design and implement a technique capable of detecting
potential deadlock bugs of Java programs at compilation time. This objective is difficult
because Java has a complex concurrent model: it uses threads that may perform read/write
operations over shared variables and whose execution depends on the scheduling strategy
implemented in the Java Virtual Machine (JVM). In addition, Java, being a full-fledged pro-
gramming language, includes an extensive standard library with lots of features implemented
in native language.

To reduce the complexity of our work, we decided to address the Java bytecode, namely
198 instructions that are the compilation target of every Java application and have a reference
semantics that is defined by the JVM behaviour. Therefore, it is possible to deliver correctness
results without narrowing our original goal or oversimplifying our job. In fact, our technique is
similar to those used for demonstrating the correctness of the Bytecode Verifier [19, 6, 15, 12].

In order to present our deadlock detection technique, we isolate a subset of Java bytecode,
called JVMLd, which includes basic instructions for concurrency, such as thread creations,
synchronizations, and creations of new objects. The language is defined in Section 3. The
technique consists of two stages.

The first stage defines a type system that reconstructs the concurrent behaviour of
methods. The key principles are the following ones. Each method has an associated type

1 http://bugs.java.com/
2 https://issues.apache.org/jira

licensed under Creative Commons License CC-BY
Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs...
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

XX:2 Deadlock detection of Java Bytecode

that depends on the type of the arguments (the object “this” is one argument) and that
expresses the concurrent behaviour. This “concurrent behaviour” reports (i) the sequence of
locks that has been acquired/released by the method, (ii) the threads created, and (iii) the
methods that have been invoked. It includes the analysis of aliases that traces the creation of
new objects and their copies (because JVMLd instructions may create and copy objects). The
alias analysis is performed in a symbolic way by using a finite set of names: this is a critical
part of our technique because methods may create threads and, when methods are either
recursive or iterative, the set of created threads may be infinite. In particular, we had to
devise finite representatives of (infinite sets of) thread names that are sound with respect to
the (deadlock) analysis. Section 2 reports a code that can be written in (a simple extension
of) JVMLd and that is problematic as regards deadlock detection. Section 4 describes the
type system.

The second stage of our technique defines the analysis of the behavioural model. In fact,
the three reports above – (i), (ii), and (iii) – are terms in a modelling language that extend
so-called lams [11, 10, 14]. Lams are conjunctions and disjunctions of object dependencies
and method invocations and the extension has been necessary for modelling Java reentrant
locks. In particular, our dependencies also carry thread names – pa, bqt means that the thread
t, which owns the lock of a, is going to lock b. In Java, the lam pa, aqt is not a circular
dependency because it means that t is acquiring the lock of a twice. Because of this extension,
the algorithm for detecting circularities in lams is different than the one in [10, 14]. We
address this issue in Section 5.

Our deadlock detection technique has been prototyped and the verifier is called JaDA.
While the type system in this paper simply checks static informations, JaDA infers the
behavioural types from the bytecode (an overview of the algorithm is reported in [9]).
Inference is important in practice because it lightens the analysis but, for space limitations,
we decided to discuss it in the full paper. However, checking is crucial for type safety, which
we address in a (very) concise way in Section 6 (for reviewer’s sake, the details appear in
the Appendix). It is also worth to notice that JaDA includes several features of JVML; this
has made possible to deliver initial assessments of the tool. Section 7 discusses JaDA, its
assessments and related work; we conclude in Section 8.

2 Overview of JVML and of our technique

Figure 1 reports a Java class called Network and some of its JVMLd representation. The
corresponding main method creates a network of n threads by invoking buildNetwork – say
t1, ¨ ¨ ¨ , tn – that are all potentially running in parallel with the caller – say t0. Every two
adjacent threads share an object, which are also created by buildNetwork. Every thread
ti locks the two adjacent objects, that are passed as (implicit) arguments of the thread,
and terminates – this is performed by the method takeLocks. It is well-known that, if the
network is circular – the thread tn is sharing one of its objects with t0 and if all the threads
have a symmetric strategy of locking objects then a deadlock may occur. On the contrary, if
the network is not circular, no deadlock will ever occur. Therefore buildNetwork(n,x,x) is
deadlocked (when n ą 0) and buildNetwork(n,x,y) is deadlock free (assuming x ‰ y).

The problematic issue of Network is that the number of threads is not known statically
because n is an argument of main. This is displayed in the bytecode of buildNetwork in
Figure 1 by the instruction at address 30 where a new thread is created and by the instruction
at address 37 where the thread is started. The recursive invocation that causes the (static)
unboundedness is found at instruction 47. Our technique is powerful enough to cope with such

A. Garcia and C. Laneve XX:3

class Network{

public void main(int n){
Object x = new Object();
Object y = new Object();
// buildNetwork(n, x, x); // deadlock
buildNetwork(n, x, y); //no deadlock

}

public void buildNetwork(int n,
Object x, Object y){

if (n==0) {
takeLocks(x,y) ;

} else {
final Object z = new Object() ;
Thread t = new Thread(){

public void run(){
takeLocks(x,z) ;

}} ;
t.start();
this.buildNetwork(n-1,z,y) ;

}
}

public void takeLocks(Object x,
Object y){

synchronized(x){ synchronized(y){ } }
}

}

public void buildNetwork(int n, Object x, Object y)
0 iload_1 //n
1 ifne 13
4 aload_0 //this
5 aload_2 //x
6 aload_3 //y
7 invokevirtual 24 //takeLocks(x, y):void

10 goto 50
13 new 3
16 dup
17 invokespecial 8 //Object()
20 astore 4 //z
22 new 26
25 dup
26 aload_0 //this
27 aload_2 //x
28 aload 4 //z
30 invokespecial 28 //Network$1(this, x, z)
33 astore 5 //thr
35 aload 5 //thr
37 invokevirtual 31 //start():void
40 aload_0 //this
41 iload_1 //n
42 iconst_1
43 isub
44 aload 4 //z
46 aload_3 //y
47 invokevirtual 36 //buildNetwork(n-1, z, y):void
50 return

Figure 1 Java Network program and corresponding bytecode (only the buildNetwork method).
Comments in the bytecode give information of the objects used and/or methods invoked in each
instruction

problems and predict the faulty behaviour in case of the invocation buildNetwork(n,x,x)
and the correct behaviour if the invocation is buildNetwork(n,x,y). The technique works
as follows. It infers abstract methods’ behaviors by computing types, called lams, of their
bytecode bodies. These lams abstract each bytecode instruction by dropping the non-relevant
information for the deadlock analysis (e.g. operations on integer variables). In practice,
the relevant operations for deadlock analysis are: locking operations (monitorenter and
monitorexit instructions), thread spawning operations, function invocations and objects’
structures. Thereafter the abstract model is analysed by a solver.

3 The language JVMLd

JVMLd is a restriction of JVML that includes basic constructs and instructions for concurrency 3.
In JVMLd, a program is a collection of class files whose methods have bodies written in JVMLd
bytecode. This bytecode is a partial map from addresses Addr to instructions. Addresses,
ranged over L, L1, ¨ ¨ ¨ , are intended to be nonnegative integers and we use the function L` 1
that returns the least address that is strictly greater than L. When P is a bytecode, we
write dompP q to refer to its domain (the set of addresses) and we assume that 0 P dompP q
for every bytecode P .

We use a number of names: for classes, ranged over by C, D, ¨ ¨ ¨ , for fields, ranged over
by f, f1, ¨ ¨ ¨ , for methods, ranged over by m, m1, ¨ ¨ ¨ , and for local variables, ranged over by x,
y, ¨ ¨ ¨ . A possible empty sequence of names or syntactic categories of the following grammar
is written by over-lining the name or the syntactic category, respectively. For instance a

3 Actually, JVMLd has a minor difference with respect to JVML: in JVML, local variables are addressed by
non-negative integers instead of names.

XX:4 Deadlock detection of Java Bytecode

sequence of local variables is written x. Class files CF are defined by the grammar:

CF ::“ class C tfields : FD methods : MDu
FD ::“ C.f : T

MD ::“ T m pC, Tq P P

T ::“ J | int | C

where J is a special type that include all the other types (any value of any type has also
type J). This type will represent values that are unusable in our static semantics. The type
name C represents a class type, which is never recursive in JVMLd.

Instructions Instr of JVMLd bytecode are of the following form:

Instr ::“ inc | pop | push | load x | store x | if L | gotoL
| new C | putfield C.f : T | getfield C.f : T | monitorenter | monitorexit
| invokevirtual C.mpTq | start C | return

The informal meaning of these instructions is as follows:

inc increments the content of the stack; pop and push, respectively, pops and pushes the
integer 0 on the stack; load x and store x respectively loads the value of x on the stack
and pops the top value of the stack by storing it in x; if L pops the top value of the
stack and either jumps to the instruction at address L, if it is nonzero, or goes to the
next instruction; gotoL is the unconditional jump;
new C allocates a new object of type C, initializes it and pushes it on top of the stack;
putfield C.f : T pops the value on the stack and the underlying object value, and assigns
the former to the field f of the latter; getfield C.f : T pops the object on the stack and
pushes the value in the field f of that object;
monitorenter, monitorexit are the synchronization primitives that pop the object on
the stack and respectively lock and unlock it;
invokevirtual C.mpT1, ¨ ¨ ¨ , Tnq pops n values from the stack (the arguments of the
invocation) and dispatches the method m on the object on top of the stack; when the
method terminates, the returned value is pushed on the stack;
start C creates and starts a new thread for the object on top of the stack. This operation
corresponds to invokevirtual java/lang/Thread/start() on a thread of class C in
JVML. We separate it from invokevirtual in order to provide more structure to our
semantics (because it has an effect on the set of threads – see the operational semantics
in the Appendix, where we also consider the instruction join);
return terminates program execution.

The bytecode in Figure 1 is written in a sugared extension of JVMLd. In particular,
aload and iload correspond to our load instruction (when the argument is an object or an
integer, respectively), dup duplicates the top of the stack, and invokespecial is the method
invocation of the constructor of the class.

4 The static semantics

In this section we define the typing rules that are at the base of the analysis technique. In
order to simplify the presentation and the notation, we decided to drop the effect analysis,
which verifies that threads do not access to common objects in inconsistent ways (for example,
one reading and the other one writing). In particular, we assume that fields are read-only as
they cannot be modified after the initialisation (which is done by constructors that, in turn,
are not concurrent). For reviewers’ sake, the Appendix reports the complete analysis.

A. Garcia and C. Laneve XX:5

Type values, flattened record types, and record types.

The static semantics traces dependencies between objects by using symbolic names. We will
use a set of object names, ranged over by a, b, ¨ ¨ ¨ that includes void and the thread names
(threads are objects in Java); when a name is a thread name, we use t, t1, ¨ ¨ ¨ . We also use
x, y, z, ¨ ¨ ¨ to range over (generic) names and X, Y , Z, ¨ ¨ ¨ to range over variable names to
be used in the typing of methods and to be instantiated when methods are invoked.

Let type values τ and flattened record types φ be the terms

τ ::“ J | int | X | a φ ::“ prf : τ s, Cq

It is worth to remark that flattened record types also bear their class set, which is a singleton
in JVMLd (but not in full Java, where sets may contain several classes because of inheritance).
Types τ and φ are unstructured because fields are names, i.e. they are pointers to records
whenever the corresponding type is a class. This expedient allows us to analyse aliasing in a
simple way. However, the type system also uses structured types (e.g in method types). Let
(structured) record types ρ be the terms (this definition is correct because JVMLd class types
are not recursive):

ρ ::“ J | int | X | parf : ρs, Cq .

We shorten ar s into a; henceforth voidr s is shortened into void. Let rootp¨q be the function
defined as follows: rootpvoidq “ ε, rootparf : ρsq “ a, rootp¨q is the identity otherwise.

Environments.

The type rules use environments Γ that map names to type values or to flattened record
types. There are two basic operations on environments: one for sequential composition – the
update ΓrΓ1s – and one for parallel composition – the merge Γ ` Γ1. They are defined as
follows

ΓrΓ1spaq “
"

Γ1paq if a P dompΓ1q
Γpaq otherwise pΓ` Γ1qpaq “

$

&

%

Γpaq if a P dompΓqzdompΓ1q
Γ1paq if a P dompΓ1qzdompΓq
Γpaq if Γpaq “ Γ1paq

For example, let Γ “ a ÞÑ prf : bs, Cq and Γ1 “ a ÞÑ prf : cs, Cq. Then ΓrΓ1s “ a ÞÑ prf : c, Cq,
which is the standard update of an environment (this is used in constructors), while Γ` Γ1 is
undefined (because there is a race condition on the field f of a).

There is a straightforward way to get an environment from a record type and, conversely,
to transform an environment and an object name into its (structured) record type. This way
is defined by envp¨q and mk_treep¨q below:

envpρq “
#

H if ρ P tJ, int, Xu
a ÞÑ prf : rootpρqs, Cq ` p

Ř

ρ1Pρ envpρ1qq if ρ “ parf : ρs, Cq

mk_treepΓ, τq “
"

τ if τ P tJ, int, Xu
parf : mk_treepΓ, τ 1qs, Cq if τ “ a and Γpaq “ prf : τ 1s, Cq

(notice that envp¨q is partial and it and mk_treep¨q are well defined as long as class types
are not recursive, as it is indeed the case for JVMLd). We finally define typeof pΓ, τq “ C if
Γpτq “ prf : τ 1s, Cq; typeof pΓ, τq “ int if τ “ int; undefined otherwise. Similarly, for record
types ρ.

In the following we will use sets of record types, noted T ,R, ¨ ¨ ¨ .

XX:6 Deadlock detection of Java Bytecode

Main(this | t,u) = Object.init(x | t,u):x[] + Object.init(y | t,u):y[]
+ buildNetwork(this,_,x,x | t,u) + buildNetwork(this,_,x,y | t,u)

takeLocks(this,x,y | t,u) = t:(u,x) & t:(x,y)

buildNetwork(this,_,x,y | t,u) = takeLocks(this,x,y | t,u) + Object.init(z | t,u):z[]
+ Network$1.init(t1,this,x,z | t, z):t1[this$0:this[], val$x:x[], val$z: z[]]
+ Network$1.run(t1 | t1,u1)
+ Network$1.run(t1 | t1,u1) & buildNetwork(this,_,z,y | t,u)

Object.init(this | t, u):this[] = 0

Network$1.init(this, x1, x2, x3 | t, u):this[this$0:x1, val$x:x2, val$z:x3] = 0

Network$1.run(this[this$0:x1, val$x:x2, val$z:x3] | t, u) = takeLocks(x1, x2, x3 | t, u)

Figure 2 Network’s lams

Lams.

Behavioural types are lams [10], noted `, whose syntax is

` ::“ 0 | pa, bqt | C.mpρq Ñ ρ1 | pν aq` | `N ` | `` `

The type 0 is the empty type; pa, bqt specifies a dependency between the object a and the
object b that has been created by the thread t. The term C.mpρq Ñ ρ1 defines the invocation
of C.m with arguments ρ and with returned record type ρ1. The argument sequence ρ has
always at least three elements in our case; in particular the first element is the record type
of the carrier, while the last two elements of the tuple ρ are respectively the thread t that
performed the invocation and the last object name whose lock has been acquired by t. These
two informations are used by the analyzser to build the right dependencies between callers
and callees. The operation pν aq` creates a new name a whose scope is the type `; the
operations `N `1 and `` `1 define the conjunction and disjunction of the dependencies in `
and `1, respectively. The operators ` and N are associative and commutative. We shorten
`1 ` ¨ ¨ ¨ ` `n and `1N¨ ¨ ¨N`n into

ř

iP1..n `i and NiP1..n`i, respectively.
A lam program is a pair

`

L , `
˘

, where L is a finite set of function definitions

C.mpρq Ñ ρ1 “ `C.m

with `C.m being the body of C.m, and ` is the main lam. We notice that the type ρ1 is considered
an argument of the lam function as well.

The lams of the Network’s code in Figure 1 are shown in Figure 2 (lams have been
simplified for easing the readability).

Behavioural Class Table.

A behavioural class table bct is a map from pairs C.m tomethod types pρ̄, t, aq Ñ pν a1qxρ,T ,R, ρ1, `y

where

ρ̄ is the tuple of record types of the carrier and of the arguments; t is the thread name of
the caller and a is the last lock taken (and not released) by the caller;
pν a1q are the names that have been created by the method (and occur in the part in
angular brackets);
ρ is the record type of the returned value; this type may contain fresh object names that
are created by the method body;
T is the set of threads that have been created by the method (this set only contains
record types whose root names are fresh);

A. Garcia and C. Laneve XX:7

R is similar to T . Because of recursion, C.m may create infinitely many threads; in this
case R is a finite representation of an infinite set;
ρ1 is the record type highlighting the changes to the arguments performed by the invocation
(with the restriction we have, this is relevant for constructors);
` is the lam of the method C.m.

Let σ be a substitution that renames object names and replaces variable names with
record types and such that there is no clash of names c with names in σ. The instance of a
method type pρ, t, aq Ñ pν cqxρ,T ,R, ρ1, `y is

pρ, t, aqσ Ñ pν cqpxρ,T ,R, ρ1, `yσq

Let pρ, t, aq Ñ pν cqxρ,T ,R, ρ1, `y be an instance of bctpC.mq. When we write bctpC.mqpρ, t, aqpbq
we mean the tuple xρ,T ,R, ρ1, `ytb{cu.

Typing judgments.

The judgment of JVMLd bytecode P will be bct,Γ, F, S, Z,T ,R, i $t P : ` ; Ψ where:

bct is the behavioural class table; Γ, F, S, Z,T ,R are vectors indexed by the addresses
in dompP q;
the environment Γi is the environment at address i;
the map Fi maps local variables to type values – we let FJ be the map such that F pxq “ J,
for every x;
Si is a sequence of type values;
Zi is the sequence of object names locked at address i;
Ti and Ri are similar to the corresponding sets in method types;
t is the symbolic thread name that executes P ;
` is part of the behavioural type of P at address i. The full behavioural type also includes
Zi, Ti, and Ri (see below);
Ψ may be either empty, in this case the judgment is shortened into bct,Γ, F, S, Z,T ,R, i $t
P : `, or a tuple pρ, Zi,Ti,Ri,Γiq. Let

Ů

be the commutative and associative operator
defined as follows

pρ, Zi,Ti,Ri,Γiq
Ů

H
def
“ pρ, Zi,Ti,Ri,Γiq

pρ, Zi,Ti,Ri,Γiq
Ů

pρ1, Zi,Tj ,Rj ,Γjq
def
“ p ρ, Zi,Ti Y Tj ,Ri YRj ,Γi ` Γj q

(
Ů

is only defined on tuples with the elements ρ and Zi equal).

Let Zi “ a1 ¨ ¨ ¨ an be the sequence of (locked) object names at instruction i; we assume that
the leftmost object name is the more recent one that has been taken. The functions rZis and
ŇZi
t are defined as follows

rZis “ a1
ŇZi
t
“ NjP2..npaj , aj´1qt

We observe that Zi may contain twice the same object name; this means that the thread
has acquired twice the corresponding lock. For instance Zi “ a ¨ a. In this case ŇZi

t
“ pa, aqt,

which is not a circular dependency – this is the reason why we index dependencies with
thread names.

Let lockt be a special object name that is paired with the thread t. The lam yTi is the
term

yTi “ N
ρPTi

typeof pρq.runpρ, Cq, t, locktq

XX:8 Deadlock detection of Java Bytecode

Stack manipulation instructions
P ris “ inc i` 1 P dompP q

Γi “ Γi`1 Fi “ Fi`1 Si “ int ¨ S1 “ Si`1
Zi “ Zi`1 Ti “ Ti`1 Ri “ Ri`1

bct,Γ, F, S, Z,T ,R, i $t P : 0

P ris “ pop i` 1 P dompP q
Γi`1 “ Γi Fi “ Fi`1 Si “ τ ¨ Si`1
Zi “ Zi`1 Ti “ Ti`1 Ri “ Ri`1

bct,Γ, F, S, Z,T ,R, i $t P : 0

P ris “ push i` 1 P dompP q
Γi “ Γi`1 Fi “ Fi`1 int ¨ Si “ Si`1
Zi “ Zi`1 Ti “ Ti`1 Ri “ Ri`1

bct,Γ, F, S, Z,T ,R, i $t P : 0

P ris “ load x i` 1 P dompP q
Γi “ Γi`1 Fi “ Fi`1 Si`1 “ Fipxq ¨ Si

Zi “ Zi`1 Ti “ Ti`1 Ri “ Ri`1

bct,Γ, F, S, Z,T ,R, i $t P : 0

P ris “ store x i` 1 P dompP q
Γi “ Γi`1 Fi`1 “ Firx ÞÑ τ s Si “ τ ¨ Si`1

Zi “ Zi`1 Ti “ Ti`1 Ri “ Ri`1

bct,Γ, F, S, Z,T ,R, i $t P : 0

Control flow instructions

P ris “ goto L L P dompP q
Γi “ ΓL Fi “ FL Si “ SL

Zi “ ZL Ti “ TL Ri “ Ri`1

bct,Γ, F, S, Z,T ,R, i $t P : 0

P ris “ if L i` 1, L P dompP q
Γi`1 “ Γi “ ΓL Fi “ Fi`1 “ FL

Si “ int ¨ Si`1 Si`1 “ SL Zi “ Zi`1 “ ZL

Ti “ Ti`1 “ TL Ri “ Ri`1 “ RL

bct,Γ, F, S, Z,T ,R, i $t P : 0

Return
P ris “ return Si “ τ ¨ S1

bct,Γ, F, S, Z,T ,R, i $t P : 0 ; pmk_treepΓi, τq, Zi,Ti,Ri,Γiq

Figure 3 Type rules for JVMLd programs – Part I

where run is the method that is invoked by the Java instruction t.startpq. We notice that
start has no arguments, except the callee t: the parameters are passed to the methods
through the fields of t.

The lam }Ri is the term

}Ri “ NρPRi
RUNpρq

RUNpptrf : ρs, Cqq “ C.runpptrf : ρs, Cq, t, locktq N pν t1q RUNppt1rf : ρs, Cqq

The presence of recursion in }Ri is the main difference with yTi . In fact, Ri collects threads
that have been created by recursive or iterative methods. This means that there may be
several threads with equal fields but different root names running in parallel and that may
compete for the same locks.

Whenever i P dompP q, we write “i is recursive” if i is within a recursive or mutually
recursive method. Otherwise we write “i is not recursive”.

Type rules.

The type rules for a JVMLd programs are reported in Figures 3 and 4.

The function namespiq. This function takes an address i and returns a tuple of names
whose length depends on the address. It is the technical expedient to keep the set R finite
when methods are either recursive or iterative. For example, let C.m be a recursive method
and let pρ, t, aq Ñ pν a1qxρ,T ,R, ρ1, `y be its type. If C.m starts a new thread t and, in a
successive instruction at address i, invokes itself recursively (this happens for instance in
method buildNetwork of Figure 1) then the set Ri`1 will be equal to RYttu. If, in addition,

A. Garcia and C. Laneve XX:9

Method invocations

P ris “ invokevirtual C.m pT0, ¨ ¨ ¨ , Tkq i` 1 P dompP q Si “ τk ¨ ¨ ¨ τ0 ¨ S
1

typeof pΓi, τ0q “ C mk_treepΓi, pτ0, ¨ ¨ ¨ , τkqq “ pρ0, ¨ ¨ ¨ , ρkq

b “ namespiq bX varpρ0, ¨ ¨ ¨ , ρk, t, rZisq “ H

bctpC.mqpρ0, ¨ ¨ ¨ , ρk, t, rZisqpbq “ xρ,T 1,R1, pρ10, ¨ ¨ ¨ , ρ
1
kq, `y

Γi`1 “ Γirenvpρq ` p
Ř

iP0..k envpρ1iqqs
Si`1 “ rootpρq ¨ S1 Fi`1 “ Fi Zi`1 “ Zi

Ti`1,Ri`1 “

"

Ti Y T 1, Ri YR1 if i is not recursive and pTi YRiq X pT
1
YR1q “ H

Ti, Ri YR1 Y T 1 otherwise

bct,Γ, F, S, Z,T ,R,K, i $t P : C.mpρ0, ¨ ¨ ¨ , ρk, t, rZisq Ñ ρ

P ris “ start C i` 1 P dompP q Si “ t1 ¨ Si`1
typeof pΓi, t

1
q “ C mk_treepΓi, t

1
q “ ρ b “ namespiq bX varpρ, t1, lockt1 q “ H

bctpC.runqpρ, t1, lockt1 qpbq “ xvoid,T 1,R1, ρ1, `y
Γi`1 “ Γi ` envpρ1q Fi “ Fi`1 Zi “ Zi`1

Ti`1,Ri`1 “

"

Ti Y tτu Y T 1, Ri YR1 if i is not recursive and τ R Ti YRi

Ti, Ri YR1 Y T 1
Y tτu otherwise

bct,Γ, F, S, Z,T ,R, i $t P : 0

Locking instructions

P ris “ monitorenter i` 1 P dompP q
Γi`1 “ Γi Fi “ Fi`1 Si “ a ¨ Si`1
Zi`1 “ a ¨ Zi Ti “ Ti`1 Ri “ Ri`1

bct,Γ, F, S, Z,T ,R, i $t P : 0

P ris “ monitorexit i` 1 P dompP q
Γi`1 “ Γi Fi “ Fi`1 Si “ a ¨ Si`1
Zi`1 “ Ziza Ti “ Ti`1 Ri “ Ri`1

bct,Γ, F, S, Z,T ,R, i $t P : 0

Object manipulation instructions

P ris “ new C i` 1 P dompP q a “ namespiq fieldspCq “ f̄
Γi`1 “ Γira ÞÑ prf : Js, Cqs

Fi “ Fi`1 Si`1 “ a ¨ Si Zi “ Zi`1 Ti “ Ti`1 Ri “ Ri`1

bct,Γ, F, S, Z,T ,R, i $t P : 0

P ris “ putfield C.f : T i` 1 P dompP q
Si “ τ ¨ a ¨ Si`1 Γipaq “ prf : τ 1, f : τ 1s, Cq

Γi`1 “ Γira ÞÑ prf : τ, f : τ 1s, Cqs Fi “ Fi`1
Zi “ Zi`1 Ti “ Ti`1 Ri “ Ri`1

bct,Γ, F, S, Z,T ,R, i $t P : 0

P ris “ getfield C.f : T i` 1 P dompP q
Si “ a ¨ S1 Γipaq “ prf : τ, f : τ s, Cq

Γi`1 “ Γira ÞÑ prf : τ, f : τ s, Cqs
Si`1 “ τ ¨ S1 Fi “ Fi`1 Zi “ Zi`1

Ti “ Ti`1 Ri “ Ri`1

bct,Γ, F, S, Z,T ,R, i $t P : 0

Method definitions

bctpC.mq “ pρ0, ¨ ¨ ¨ , ρk, t, aq Ñ pνa1qxρ,T 1,R1, ρ1, `y F1 “ FJr0 ÞÑ rootpρ0q, ¨ ¨ ¨ , k ÞÑ rootpρkqs

Γ1 “
Ř

iP0..k envpρiq S1 “ ε Z1 “ a T1 “ H R1 “ H
´

bct,Γ, F, S, Z,T ,R, i $t P : `i ; Ψi

¯iPdompP q
` “

ř

iPdompP q
yTi N |Ri N ŊZi

t N `i
Ů

iPdompP qΨi “ pϑ, a,T
1,R1,Γ1q

ρ1 “ mk_treepΓ1, prootpρ0q, ¨ ¨ ¨ , rootpρkqqq a1 “ fnpρ,T 1,R1, ρ1qz fnpρ0, ¨ ¨ ¨ , ρk, t, aq

bct $ T C.m pT1, ¨ ¨ ¨ , Tkq P

Figure 4 Type rules for JVMLd programs – Part II

XX:10 Deadlock detection of Java Bytecode

the instruction at i` 1 is return, we obtain the equation R “ RYttu. This equation has no
solution if t is always a fresh name (as it is the case in the JVML semantics); on the contrary
it has solution R “ ttu if namespiq “ t. This second alternative has been our choice. In turn,
this choice has an important impact on the analysis. In particular, we decided to constrain
the threads created by recursive invocations or iterative codes to have the same tree structure
– i.e. the corresponding nodes are equal. The analysis of behavioural types – the set R is part
of them – will take care of this over-approximation. Actually, the evaluation of R spawns
infinitely many lam functions with arguments bearing pairwise different fresh root names
(cf. the function |R), while it is not the case for the type of T .

Comments about the type rules. The type rules that are important for the deadlock
analysis are collected in Figure 4 and we will focus on them; the rules in Figure 3 are almost
standard, see for instance [15].

The rule for invokevirtual computes the instance of bctpC.mq according to the arguments
of the invocation. Let xρ,T 1,R1, ρ1, `y be such instance. Since invokevirtual is a sequential
invocation, its effects are reported in the environment Γi`1 that types the next instruction.
There are three effects: (i) the returned value, because it may be an object created by the
method; (ii) the updates of the arguments of the invocation – the tuple ρ1 – that, according
to the restrictions we have, happens when C.m is a constructor; (iii) the threads that have
been spawned by C.m – the set T 1, in case C.m is not recursive, and the set R1, in case C.m is
recursive or invokes methods that recursively spawn new threads. The sets Ti`1 and Ri`1
contain the threads that have been created by P up-to i. It is important to keep Ri`1 as
small as possible because this impacts on the precision of our analysis: we are precise on
threads in Ti`1 (because they are created exactly once) while we are over-approximate on
threads in Ri`1. So,

if C.m is not recursive and the instruction i is not inside an iteration (that is, it is executed
once) then Ti`1 and Ri`1 are TiYT 1 and RiYR1, respectively. The foregoing sentence
in italics is expressed by the constraint pTi YRiq X pT 1 YR1q ‰ H. We explain this
constraint with an example. Assume that i`1 is a goto i (this means that the invocation
is performed infinitely many times). Then, by the type rule for goto, Ti “ Ti`1 and
Ri “ Ri`1. Therefore the threads in T 1 YR1 must be already in Ti YRi.
otherwise both T 1 and R1 are added to Ri`1.

The lam in the conclusion contains the invocation to C.m. We observe that this invocation
is part of the behavioural type of the instruction: the full type also includes the terms
yTi N |Ri and the dependencies of the sequence of locks in Zi – the term ŇZi

t – see the rule
for method invocations.

The rule for start computes the instance of bctpC.runq where C is the type of the
thread t1 on top of the stack Si. In our case ρ1 “ ρ because fields cannot be updated. The
environment Γi`1 contains the threads spawned by C.run – the sets T 1 and R1 in the premise.
The sets Ti`1 and Ri`1 are augmented with the thread that has been just spawned and
those spawned by it as done with the rule for invokevirtual.

The rules for the locking instructions monitorenter and monitorexit update the map
Z as expected. We notice that this update has an effect on the lam {Zi`1

t by augmenting or
reducing the dependencies, respectively.

The rule for method declarations C.m verifies whether what is declared in bctpC.mq does
match with what is checked by the judgments of the instructions in its body. Assuming that
t is the name of the current thread and a is the last lock that has been acquired, then we
constrain the first instruction of C.m to be typed with F1 such that the first k local variables

A. Garcia and C. Laneve XX:11

are set to the arguments of the invocation and Γ1 defining such arguments. As regards
S1, T1 and R1, they are all empty, while Z1 “ a. The matching between bctpC.mq and
what is checked by the judgments is performed by collecting the tuples pϑi, Zi,Ti,Ri,Γiq of
the return statements and merging the results. Notice that, if C.m does not perform any
concurrent operation (start, monitorenter, monitorexit) and does not perform method
invocations then every Ti is empty and every Zi is a. Therefore, the lam of every instruction
is always 0.

5 The analysis of circularities in lams

Once behavioural types have been computed for the whole JVMLd program, we can analyse
the type of the main method. The analysis uses an extension of the algorithm defined
in [10, 14] that we briefly overview in this section. The paper [9] reports the pseudo-code of
the algorithm that is implemented in our verifier; here we give an informal presentation.

The semantics of lams is very simple: it amounts to unfolding method invocations. The
critical points are that (i) every invocation may create new fresh names and (ii) the method
definitions may be recursive. These two points imply that a lam model may have infinite
states, which makes any analysis nontrivial. It is worth to recall that the states of lams are
conjunctions (N) of dependencies and method invocation (because types with disjunctions
` are modelled by sets of states with conjunctive dependencies).

The results of [10, 14] allow us to reduce the analysis to finite models, i.e. finite disjunctions
of finite conjunctions of dependencies. In turn, this finiteness makes possible to decide the
presence of a so-called circularities, namely terms such as pa, bqt N pb, aqt1 .

The difference with [10, 14] is that there the dependencies are not indexed by thread
names: here we use more informative dependencies in order to cope with Java reentrant
locks. In particular pa, bqt N pb, aqt is not a circularity and, when t ‰ t1, we carefully separate
it from pa, bqt N pb, aqt1 . The definition of transitive closure, which is the base of the notion
of circularity, is therefore new. Let t ‰ t1 and let X be a special object name. Let also ` be a
conjunction N of dependencies.

The transitive closure of `, noted ``, is the least conjunction that contains ` and such
that if pa, bqt N pb, cqt1 is a subterm of `` then either (i) pa, cqX is a subterm of ``, if
t ‰ t1, or (ii) pa, cqt is a subterm of ``, if t “ t1.
We say that ` has a circularity if there is a such that pa, aqX is a subterm of ``.

For example ` “ pa, bqt N pb, aqt N pb, cqt1 has no circularity because `` “ pa, bqt N pb, aqt N pa, aqt
N pb, bqt N pb, cqt1 N pa, cqX does not contain any pair pa, aqX (this symbol X is a special thread
name indicating that the dependency is due to the contributions of two or more threads).

§ Remark. Actually, our verifier uses a notion of transitivity that is a refinement of the one
described above. In particular, dependencies are labelled by the sequence of threads that
contribute to them. These more informative labels allows us to compute transitive closures
of terms like pa, bqt N pb, cqt N pa, cqt1 N pc, bqt1 in a more precise way. In fact, in this case,
the mutual exclusion on the initial object a makes the concurrent presence of pb, cqt and
pc, bqt1 not possible. We finally notice that, using sequences of thread names as indices of
dependencies allows us to reconstruct, at least in part, the execution path that produces the
error. This is crucial for detecting false positives.

XX:12 Deadlock detection of Java Bytecode

6 Intermezzo: correctness results

The proof of correctness of our type system is long, even if almost standard. In this section
we overview it by highlighting the main parts; the details of this proof can be found in the
Appendix. The first part of the proof addresses the soundness of the type system in Section 4.
This requires

1. an operational semantics of JVMLd;
2. an extension of the type system to handle JVM runtime configurations.

Then, as usual with type systems, the soundness is represented by a subject reduction theorem
expressing that, if a JVM configuration cn has lam ` and cn reduces to a configuration cn1
then (i) cn1 is also well-typed and (ii) if `1 is the type of cn1 then ` and `1 are in a relation
called later stage and noted ` ě `1.

The second part of the proof is about the correctness of the later stage relation with respect
to the deadlock analysis. We first demonstrate that the lam of a deadlocked configuration
always contains a circularity between names. Then we demonstrate that, if ` ě `1 and ` has
no circularity then also `1 has no circular dependency.

As a byproduct of the above results we get that, if the lam of a JVMLd program has no
circularity then the JVMLd program is deadlock-free.

7 Related Work and JaDA

Several techniques have been designed for detecting deadlocks of Java programs. We discuss
separately those using static-time techniques and those requiring either model generation or
runtime executions.

Static approaches

Type Systems. Few works use type systems for the deadlock detection in Java. To our
knowledge, the most complete work is [4], which defines a type system that derives the order
of lock acquisitions in SafeJava programs (a subset of Java with annotations written as part
of the code). Well-typed programs will be verified deadlock free. An extension of this type
system for JVML has been defined in [18]. Our technique differs from this approach in two key
aspects. First of all, we aim at a fully automatic tool allowing to analyse existing programs
without user intervention (or with a poor intervention that providing behavioural types of
native methods because their code is not available). In addition, our types are behavioural;
therefore deadlock-freedom is not a property of the type system, but it is verified by a solver
that evaluates behavioural types.

Data Flow Analysis. A standard approach for detecting circular dependencies in concurrent
programs is based on the construction of an execution flow graph and the search for cycles
within this graph. In order to cope with aliasing (processes may use different names to
access to the same resource), the definition of the execution flow graph uses a data-flow
analysis technique, as in Jlint [1]. In [20], data flow analysis is used for defining a formal
set of rules that specify the lock order (the mechanism is similar to one used in the type
system of this paper). As in our case, [20] has a sound strategy for detecting re-entrant
locks; however the re-entrance in their case is restricted to lock expressions that only use
local variables (it is not possible to use fields). Finally, the technique in [20] does not detect
circularities with a common prefix (see Remark in Section 5), thus leading to a higher number
of false positive outcomes. Data flow analysis is also used by Nayik [16] for verifying a set of
necessary conditions for the existence of deadlocks. This is the theory used by Chord, one of

A. Garcia and C. Laneve XX:13

the most effective deadlock detection tools for Java according to [5, 16] (in the following we
will compare Chord with our verifier).

Non-static approaches

Non static techniques usually analyse programs that have finite models. The advantage of
these techniques is that they perform a very precise analysis.

Model Checking. [13] presents a model checking approach composed of two steps. A first
step generates a so called trace program that records the critical concurrent operations and
discards non critical parts. In a second step this program is analysed using an off-the-shelf
model checker. Like this technique, our approach tries to get rid of non critical parts of the
program. In our case, we use lams, thus allowing to perform the analysis in a reduced but
key part of the program, without constraining the program model to be finite.

Monitoring Analysis. Monitoring techniques detect potential deadlocks at runtime. Our
analysis of circularities has some similarities with the one presented in [3], such as the
management of re-entrance. On the other hand the two approaches differ substantially when
parallel codes is detected. Our technique detects the parallel states in the type system and,
therefore, is over-approximate. The analysis of [3], being at runtime, tags each segment
of the program that is reached by the execution flow by specify the exact order of lock
acquisitions. Thereafter, they use an hybrid strategy for detecting potential deadlocks that
might occur because of different scheduler choices (than the current one). The theory of [3]
has been prototyped in the GoodLock tool, which has been used in the following assessment
of our verifier. This technique has also been refined in Sherlock, which also uses symbolic
executions [5].

JaDA

The technique described in this paper has been prototyped. The verifier, called JaDA [8, 9],
is implemented in Java and includes features such as constructors, arrays, exceptions, static
members, interfaces, inheritance, recursive data types (Garcia’s PhD thesis contains the
technical details of these extensions [7]). These extensions have made possible to deliver
an initial assessment of JaDA with respect to existing deadlock analysis tools for Java. In
particular, we have taken Chord for static analysis [16], Sherlock for dynamic analysis [5], and
GoodLock for hybrid analysis [3]. We have also considered a commercial tool, ThreadSafe 4 [2].
Out of these tools, we were able to install and effectively test only two of them: Chord and
ThreadSafe; the results corresponding to GoodLock and Sherlock come from [5]. We also
had problems in testing Chord with some of the examples in the benchmarks, perhaps due to
some misconfigurations, that we were not able to solve because Chord has been discontinued.

We have analysed a number of programs that exhibit a variety of sharing patterns. The
source of all benchmarks in Table 1 is available either at [5, 16] or in the JaDA-deadlocks
repository5. Since the current release of JaDA does not completely cover JVM, in order to
gain preliminary experience, we modified the Java libraries and the multithreaded server
programs of RayTracer, MolDyn and MonteCarlo (labelled with “(*)” in the Table 1) and
implemented them in our system. This required little programming overhead; in particular,
we removed volatile variables, avoided the use of Runnable interfaces for creating threads,
and reduced the invocations of native methods involved in I/O operations.

4 http://www.contemplateltd.com/threadsafe
5 https://github.com/abelunibo/Java-Deadlocks

XX:14 Deadlock detection of Java Bytecode

Table 1 Comparison with different deadlock detection tools. The inner cells show the number of
deadlocks detected by each tool. The output labelled “(*)” are related to modified versions of the
original programs: see the text.

Static Hybrid Dynamic Commercial
benchmarks JaDA Chord GoodLock Sherlock ThreadSafe
Sor 1 1 7 1 4
RayTracer (*) 0 0 8 2 0
MolDyn (*) 0 0 6 1 0
MonteCarlo (*) 0 0 23 2 0
BuildNetwork 3 0 0
PhilosophersN 3 0 0
ThreadArrays 1 1 1
ThreadArraysWJoins 1 1 0
ScalaSimpleDeadlock 1
ScalaPhilosophersN 3

The first block of programs belongs to a well known group used as benchmarks for several
Java analysis tools. In its current state JaDA only detects 1 deadlock in all of the four
analysed programs from this group. It gives responses that are similar to ThreadSafe and
Chord (ThreadSafe appears a bit more imprecise on Sor). The programs in the second block
corresponds to examples designed to test our tool against complex deadlock scenarios like
the Network program. We notice that both Chord and ThreadSafe fail to detect those kinds
of deadlocks. The third group reports the analysis of two examples of Scala programs [17]
(the Scala compiler 2.11 produces Java bytecode). We finally remark that, to the best of
our knowledge, there is no static deadlock analysis tool for Scala (for this reason the entries
corresponding to the other tools are empty).

8 Conclusions

We have defined a new technique for detecting deadlocks in Java programs by analysing
the Java intermediate language JVML. The technique has been specified by focusing on a
subset of JVML featuring thread creations and synchronizations, called JVMLd. We have also
developed a prototype, called JaDA, which also covers complex features of Java, such as
static members, arrays, recursive data types, exception handling, inheritance and dynamic
dispatch. These extensions have made possible to deliver an initial assessment of JaDA with
respect to existing deadlock analysis tools for Java.

Our future work includes the analysis of features of Java that have not yet been studied.
One relevant feature is thread coordination, which is expressed by the methods wait, notify
and notifyAll. The solution we are currently investigating uses more expressive lams,
with special dependencies pa, awqt and pa, anqt for representing the wait-notify relations. In
particular, pa, awqt means that “thread t has the lock a and has invoked the method wait on
it”; pa, anqt means that “thread t has the lock a and has invoked the method notify on it”.
These dependencies and the analysis that the wait operation happens-before the matching
notification should increase the precision in detecting deadlocks.

Another extension addresses native methods, namely methods that are not implemented
within the language and that are used when it is necessary to interact with the Operating
System or for meta-programming purposes. Our current solution is to manually insert in the
bct the behavioural types of native methods. We are investigating testing mechanisms that
may help in writing the types of such methods.

A. Garcia and C. Laneve XX:15

References
1 Cyrille Artho and Armin Biere. Applying Static Analysis to Large-Scale, Multi-Threaded

Java Programs. In 13th Australian Software Engineering Conference (ASWEC 2001), pages
68–75, 2001.

2 Robert Atkey and Donald Sannella. Threadsafe: Static analysis for Java concurrency.
ECEASST, 72, 2015. URL: http://journal.ub.tu-berlin.de/eceasst/article/view/
1025.

3 Saddek Bensalem and Klaus Havelund. Dynamic deadlock analysis of multi-threaded pro-
grams. In in Hardware and Software Verification and Testing, volume 3875 of Lecture Notes
in Computer Science, pages 208–223. Springer, 2005.

4 Chandrasekhar Boyapati, Robert Lee, and Martin C. Rinard. Ownership types for safe
programming: preventing data races and deadlocks. In Proceedings of OOPSLA 2002,
pages 211–230. ACM, 2002.

5 Mahdi Eslamimehr and Jens Palsberg. Sherlock: scalable deadlock detection for concurrent
programs. In Proceedings of the 22nd International Symposium on Foundations of Software
Engineering (FSE-22), pages 353–365. ACM, 2014.

6 Stephen N. Freund and John C. Mitchell. A type system for the Java bytecode language
and verifier. J. Autom. Reasoning, 30(3-4):271–321, 2003.

7 Abel Garcia. Static analysis of concurrent programs based on behavioral type systems. PhD
thesis, School in Computer Science and Engineering, 2017. Available at JaDA.cs.unibo.it.

8 Abel Garcia and Cosimo Laneve. The verifier JaDA. Available at JaDA.cs.unibo.it, 2016.
9 Abel Garcia and Cosimo Laneve. JaDA – the Java Deadlock Analyser. To appear as a chapter

of the book “Behavioural Types for Reliable Large-Scale Software Systems”, available at
JaDA.cs.unibo.it, 2017.

10 Elena Giachino, Naoki Kobayashi, and Cosimo Laneve. Deadlock analysis of unbounded
process networks. In Proceedings of 25th International Conference on Concurrency Theory
CONCUR 2014, volume 8704 of Lecture Notes in Computer Science, pages 63–77. Springer,
2014.

11 Elena Giachino and Cosimo Laneve. Deadlock detection in linear recursive programs. In
14th Int. School on Formal Methods for the Design of Computer, Communication, and
Software Systems (SFM 2014), volume 8483 of Lecture Notes in Computer Science, pages
26–64. Springer, 2014.

12 Futoshi Iwama and Naoki Kobayashi. A new type system for jvm lock primitives. In Proc. of
the ASIAN Symposium on Partial Evaluation and Semantics-based Program Manipulation
(ASIA-PEPM ’02), pages 71–82, New York, NY, USA, 2002. ACM.

13 Pallavi Joshi, Mayur Naik, Koushik Sen, and David Gay. An effective dynamic analysis for
detecting generalized deadlocks. In Proceedings of the 18th International Symposium on
Foundations of Software Engineering, pages 327–336. ACM, 2010.

14 Naoki Kobayashi and Cosimo Laneve. Deadlock analysis of unbounded process networks.
Inf. Comput., 252:48–70, 2017.

15 Cosimo Laneve. A type system for JVM threads. Theoretical Computer Science, 290(1):741
– 778, 2003.

16 Mayur Naik, Chang-Seo Park, Koushik Sen, and David Gay. Effective static deadlock
detection. In 31st International Conference on Software Engineering (ICSE 2009), pages
386–396. ACM, 2009.

17 Martin Odersky and al. An Overview of the Scala Programming Language. Technical
Report IC/2004/64, EPFL, Lausanne, Switzerland, 2004.

18 Pratibha Permandla, Michael Roberson, and Chandrasekhar Boyapati. A type system
for preventing data races and deadlocks in the Java Virtual Machine Language: 1. In

http://journal.ub.tu-berlin.de/eceasst/article/view/1025
http://journal.ub.tu-berlin.de/eceasst/article/view/1025

XX:16 Deadlock detection of Java Bytecode

Proceedings of the 2007 Conference on Languages, Compilers, and Tools for Embedded
Systems (LCTES’07), page 10. ACM, 2007.

19 Raymie Stata and Martin Abadi. A type system for Java bytecode subroutines. ACM
Transactions on Programming Languages and Systems, 21(1):90–137, January 1999.

20 Amy Williams, William Thies, and Michael D. Ernst. Static deadlock detection for Java
libraries. In 19th European Conference on Object-Oriented Programming (ECOOP 2005),
volume 3586 of Lecture Notes in Computer Science, pages 602–629. Springer, 2005.

A. Garcia and C. Laneve XX:17

A The full JVMLd

The language we address in the Appendix is actually an extension of the one presented in
Section 3 because

1. we also consider the instruction join C that pops the thread on top of the stack
and joins it with the current one. This operation corresponds to invokevirtual
java/lang/Thread/join() on a thread of class C in JVML;

2. we admit that methods update fields, not just constructors;
3. we admit synchronized methods.

These extensions (in particular the first two) will impact on the type system in a significative
way because we need (i) to keep track of termination of threads and (ii) to analyze effects.
In particular, as regards (ii), we must check data races of parallel threads (for example, one
thread reading an object and the other one writing on the object) because such races reduce
the precision of the analysis.

B JVMLd and its operational semantics

The instructions of JVMLd perform a transformation of machine states, called configurations
and noted

,H xϕ1, z1yt1 ¨ ¨ ¨ xϕn, znytn

where H is the heap that contains objects created by new (see below) and a tuple xϕ, zyt
represents an active thread t with:

ϕ is a stack of activation records (or frames) ppc, f , sq with

pc is the program counter which contains the address of the instruction to be executed,
f is a total map from the set of local variables to the set of values,
s is the operand Stack of values;

z is the set of objects locked by the thread.

The object in H contains:

fields: the value of field f of object o is accessed with H poq.f; the update is noted
H poq.f ÞÑ v;
the class of the object, returned by H poq.class;
a counter z that records the number of locks performed by a thread on the object.

We use the notation H poq ÞÑ pρC
K, Cq to allocate heap space for the object o of class C, by

assigning a default value ρC
K to the fields and setting H poq.z “ 0. The operational semantics

of JVMLd is presented in Figures 5 and 6.
The initial configuration of a JVMLd program P with main method C.main is ,H

xp1C.main, fKr0 ÞÑ mains, εq, εymain, where H defines the object main and fK is the func-
tion that is always undefined.

In the following we will use C to range over sets

xppcC.m, f1, s1q ¨ ϕ1, z1yt1 ¨ ¨ ¨ xppcD.m, fn, snq ¨ ϕn, znytn

and configurations will be ranged over by ,H C .

XX:18 Deadlock detection of Java Bytecode

(s-pop)
P rpcC.m

s “ pop

P ,H xppcC.m, f , v ¨ sq ¨ ϕ, zyt Ñ
,H xppcC.m

` 1, f , sq ¨ ϕ, zyt

(s-push)
P rpcC.m

s “ push

P ,H xppcC.m, f , sq ¨ ϕ, zyt Ñ
,H xppcC.m

` 1, f , 0 ¨ sq ¨ ϕ, zyt

(s-inc)
P rpcC.m

s “ inc

P ,H xppcC.m, f , n ¨ sq ¨ ϕ, zyt Ñ
,H xppcC.m

` 1, f , pn` 1q ¨ sq ¨ ϕ, zyt

(s-load)
P rpcC.m

s “ load x

P ,H xppcC.m, f , sq ¨ ϕ, zyt Ñ
,H xppcC.m

` 1, f , f pxq ¨ sq ¨ ϕ, zyt

(s-store)
P rpcC.m

s “ store x

P ,H xppcC.m, f , v ¨ sq ¨ ϕ, zyt Ñ
,H xppcC.m

` 1, f rx ÞÑ vs, sq ¨ ϕ, zyt

(s-goto)
P rpcC.m

s “ goto LC.m

P ,H xppcC.m, f , sq ¨ ϕ, zyt Ñ
,H xpLC.m, f , sq ¨ ϕ, zyt

(s-putfield)
P rpcC.m

s “ putfield D.a τ
H 1 “ H poq.a ÞÑ e

P ,H xppcC.m, f , e ¨ o ¨ sq ¨ ϕ, zyt Ñ
,H 1 xppcC.m

` 1, f , sq ¨ ϕ, zyt

(s-getfield)
P rpcC.m

s “ getfield D.a τ
H poq.a “ e

P ,H xppcC.m, f , o ¨ sq ¨ ϕ, zyt Ñ
,H xppcC.m

` 1, f , e ¨ sq ¨ ϕ, zyt

(s-new)
P rpcC.m

s “ new D
o R dompH q

H 1 “ H ro ÞÑ pρD, Dqs

P ,H xppcC.m, f , sq ¨ ϕ, zyt Ñ
,H 1 xppcC.m

` 1, f , o ¨ sq ¨ ϕ, zyt

(s-if-true)
P rpcC.m

s “ if LC.m n ‰ 0

P ,H xppcC.m, f , n ¨ sq ¨ ϕ, zyt Ñ
,H xpLC.m, f , sq ¨ ϕ, zyt

(s-if-false)
P rpcC.m

s “ if LC.m

P ,H xppcC.m, f , 0 ¨ sq ¨ ϕ, zqyt Ñ
,H xppcC.m

` 1, f , sq ¨ ϕ, zyt

Figure 5 Reduction rules: Basic operators

C Correctness

Let A be the (infinite) set of object names, ranged over by a, b, c, ¨ ¨ ¨ . In the syntax of `,
see Section 4, the operations “N” and “`” are associative, commutative with 0 being the
identity on N, and definitions and lams are equal up-to alpha renaming of bound names.
Namely, if a R varp`q, the following axioms hold:

pν aq` “ ` ppν aq`1qN` “ pν aqp`1N`q ppν aq`1q ` ` “ pν aqp`1 ` `q

Additionally, when V ranges over lams that do not contain function invocations, the following
axioms hold:

VNV “ V V` V “ V VNp`1 ` `2q “ VN`1 ` VN`2 (1)

These axioms permit to rewrite a lam without function invocations as a collection (operation
`) of relations (elements of a relation are gathered by the operation N). Let ” be the
least congruence containing the above axioms. (The axioms (1) are restricted to terms
V that do not contain function invocations because mpρq Ñ ρ1Nppa, bqt`pb, cqtq ‰ pmpρq Ñ
ρ1Npa, bqtq`pmpρq Ñ ρ1Npb, cqtq because the evaluation of the two lams (see below) may
produce terms with different names.)

Operational semantics.

Let a lam context, noted Lr s, be a term derived by the following syntax:

Lr s ::“ r s | `NLr s | `` Lr s

As usual Lr`s is the lam where the hole of Lr s is replaced by `. According to the syntax, lam
contexts have no ν-binder; that is, the hassle of name captures is avoided. The operational

A. Garcia and C. Laneve XX:19

(s-invk)
P rpcC.m

s “ invokevirtual D.m1pT1, . . . , Tnq

synchronized R modpD.m1q

P ,H xppcC.m, f1, vn ¨ ¨ ¨ ¨ ¨ v1 ¨ o ¨ s1q ¨ ϕ, zyt Ñ
,H xp1D.m1

, f2r0 ÞÑ o, 1 ÞÑ v1, . . . , n ÞÑ vns, εq ¨
ppcC.m

` 1, f1, ‚ ¨ s1q ¨ ϕ, zyt

(s-invk-synch-0)
P rpcC.m

s “ invokevirtual D.m1pT1, . . . , Tnq

synchronized P modpD.m1q
H poq.z “ 0 H i

“ H poq.z ÞÑ 1

P ,H xppcC.m, f1, vn ¨ ¨ ¨ ¨ ¨ v1 ¨ o ¨ s1q ¨ ϕ, zztouyt Ñ
,H xp1D.m1

, f2r0 ÞÑ o, 1 ÞÑ v1, . . . , n ÞÑ vns, εq ¨
ppcC.m

` 1, f1, ‚ ¨ s1q ¨ ϕ, z Y touyt

(s-invk-synch-n)
P rpcC.m

s “ invokevirtual D.m1pT1, . . . , Tnq

synchronized P modpD.m1q
H poq.z “ n, n ą 0 H 1 “ H poq.z ÞÑ n` 1

P ,H xppcC.m, f1, vn ¨ ¨ ¨ ¨ ¨ v1 ¨ o ¨ s1q ¨ ϕ, z Y touyt Ñ
,H 1 xp1D.m1

, f2r0 ÞÑ o, 1 ÞÑ v1, . . . , n ÞÑ vns, εq ¨
ppcC.m

` 1, f1, ‚ ¨ s1q ¨ ϕ, z Y touyt

(s-start)
P rpcC.m

s “ start D

P ,H xppcC.m, f1, o ¨ s1q ¨ ϕ, zyt Ñ
,H xppcC.m

` 1, f1, s1q ¨ ϕ, zyt ,
xp1D.run, f2r0 ÞÑ os, εq, εyo

(s-join)
P rpcC.m

s “ join P rpcD.run
s “ return

P ,H xppcC.m, f1, o ¨ s1q ¨ ϕt1 , zt1yt , xppcD.run, f2, s2q, zt2yo Ñ

,H xppcC.m
` 1, f1, s1q ¨ ϕt1 , zt1yt , xppcD.run, f2, s2q, zt2yo

(s-return)
P rpcC.m

s “ return
synchronized R modpC.mq

P ,H xppcC.m, f1, v ¨ s1q ¨ ppcD.m, f2, ‚ ¨ s2q ¨ ϕ, zyt Ñ
,H xpcD.m, f2, v ¨ s2q ¨ ϕ, zyt

(s-return-synch-0)
P rpcC.m

s “ return synchronized P modpC.mq
H poq.z “ 1 H 1 “ H poq.z ÞÑ 0

P ,H xppcC.m, f1, v ¨ s1q ¨ ppcD.m, f2, ‚ ¨ s2q ¨ ϕ, z Z touyt Ñ
,H 1 xppcD.m, v ¨ f2, s2q ¨ ϕ, zyt

(s-return-synch-n)
P rpcC.m

s “ return synchronized P modpC.mq
H poq.z “ n, n ą 1 H 1 “ H poq.z ÞÑ n´ 1

P ,H xppcC.m, f1, v ¨ s1q ¨ ppcD.m, xf2, ‚ ¨ s2q ¨ ϕ, z Y touyt Ñ
,H 1 xppcD.m, f2, v ¨ s2 ¨ ϕ, z Y touyt

(s-monitorexit-0)
P rpcC.m

s “ monitorexit
H poq.z “ 1 H 1 “ H poq.z ÞÑ 0

P ,H xppcC.m, f , o ¨ sq ¨ ϕ, z Z touyt Ñ
,H 1 xppcC.m

` 1, f , sq ¨ ϕ, zyt

(s-monitorexit-n)
P rpcC.m

s “ monitorexit
H poq.z “ n, n ą 1

H 1 “ H poq.z ÞÑ n´ 1

P ,H xppcC.m, f , o ¨ sq ¨ ϕ, z Y touyt Ñ
,H 1 xppcC.m

` 1, f , sq ¨ ϕ, z Y touyt

(s-monitorenter-0)
P rpcC.m

s “ monitorenter
H “ H poq.z “ 0
H 1 “ H poq.z Ñ 1

P ,H xppcC.m, f , o ¨ sq ¨ ϕ, zztouyt Ñ
,H 1 xppcC.m

` 1, f , sq ¨ ϕ, z Z touyt

(s-monitorenter-n)
P rpcC.m

s “ monitorenter
H “ H poq.z “ n, n ą 0
H 1 “ H poq.z Ñ n` 1

P ,H xppcC.m, f , o ¨ sq ¨ ϕ, z Y touyt Ñ
,H 1 xppcC.m

` 1, f , sq ¨ ϕ, z Y touyt

Figure 6 Reduction rules: Invocations and synchronizations

XX:20 Deadlock detection of Java Bytecode

semantics of a program
`

L , `
˘

is a transition system where states are lams, the transition
relation is the least one satisfying the rule

mpρq Ñ ρ1 “ pν cq`m P L pρÑ ρ1qσ “ ρ2 Ñ ρ3 c1 fresh
p`mtc

1
{cuqσ “ `1m

Lrmpρ2q Ñ ρ3s Ñ Lr`1ms

and the initial state is the lam `1 such that ` ” pν cq`1 and `1 does not contain any ν-binder,
as well as the lam `m. (The class name in the names of lam functions has been dropped, for
simplicity.) We write Ñ˚ for the reflexive and transitive closure of Ñ.

By (red), a lam ` is evaluated by successively replacing function invocations with the
corresponding lam instances. Name creation is handled by replacing bound names of function
bodies with fresh names.

Flattening and circularities

Informally, a lam has a circularity when it has a conjunction of dependencies whose transitive
closure contains a pair pa, aqX (see Section 5). Here the hassle is that lams cannot be always
rewritten in a form suitable for defining circularities, namely disjunctions of conjunctions,
because the equations (1) do not apply to terms containing invocations. To overcome this
problem, we define the operation of flattening. The transitive closure of a lam has been
defined in Section 5.

§ Definition 1. The flattening of a lam `, noted p`q5, is the lam ` where every function
invocation has been replaced by 0.

For example, let ` “ mpa, b, c, tq ` pa, bqtNm1pb, c, t1qNmpd, b, c, tq (we assume that return
types of lam functions are empty). Then p`q5 “ 0` pa, bqtN0N0.

§ Definition 2. A lam ` has a circularity if p`q5 ”
ř

iPI `i, where every `i is a conjunction of
dependencies, and, for some a and i, pa, aqX is a subterm of `i`.

A lam program
`

L , `
˘

has a circularity if there exists `1 such that `Ñ ˚`1 and `1 has a
circularity.

Later stage relation

In the following subject reduction theorem we use a relation, called later-stage relation ě,
which is the least congruence with respect to lams that contains the rules presented in
Figure 7. The notation ě assumes the presence of a behavioural class table bct – we should
have noted the later-stage relation as ěbct, but we prefer to keep the bct implicit. A
relevant property of the later stage relation is the following.

§ Lemma 3 (Circularities). Let ` ě `1. If `1 has a circularity then ` has also a circularity.

This result mostly follows from [10, 14].

C.1 Static-time typing
We rewrite the rules of static time typing. They are more verbose than those of Section 4
because we cover more features than there. However, the reader should easily retrieve the
rules in the main paper by overlooking at the new items.

Since methods may update fields then parallel threads may manifest data races that
jeopardise the precision of the analysis. This means that, in order to deliver a more precise

A. Garcia and C. Laneve XX:21

(L-0)
` ě 0

(L-res)
` ě `1

pνaq` ě pνaq`1

(L-plus)
`1 ě `11 `2 ě `12

`1 ` `
1
1 ě `2 ` `

1
2

(L-and)
`1 ě `11 `2 ě `12

`1N`11 ě `2N`12

(L-invk)
bctpC.mqpρ̄, t, aq “ pν a1qxρ,T ,R,K, ρ1, `y b fresh

C.mpρ̄, t, aq Ñ pρtb{a1uq ě `tb{a1u

Figure 7 The later-stage relation

analysis, we need to analyze effects of methods and verify their consistency when they run in
parallel. For this reason, we annotate fields with accesses h “ t-, r, wu – with _ meaning
no access, r meaning read access, w meaning write (and possible read) access – and we let
- ď r ď w. Since ph,ďq is a lattice, we will use the operation of least upper bound \. In the
following, the flattened record types ς are terms where fields are labelled with accesses:

τ ::“ J | int | X | a ς ::“ prfh : τ s, Cq

With an abuse of notation, we will range over flattened record types with τ, τ 1, ¨ ¨ ¨ . We
always shorten f- into f.

Let

fh : τ ` fh1

: τ 1 def
“

$

&

%

fh\h1 : τ if h, h1 ď r and τ “ τ 1

fw : int if h\ h1 “ w and τ “ int “ τ 1

fw : J otherwise

It is worth to notice that fh : X ` fh1 : Y is J when X ‰ Y (and similarly when X “ a,
Y “ b and a ‰ b). Let also

pr¨ ¨ ¨ , fhi
i : τi, ¨ ¨ ¨ s, Cq ` pr¨ ¨ ¨ , f

h1
i
i : τ 1i , ¨ ¨ ¨ s, Cq

def
“ pr¨ ¨ ¨ , fhi

i : τi ` fh1
i
i : τ 1i , ¨ ¨ ¨ s, Cq

(it is assumed that the fields of the records are the same – because they have the same class
type – and the operation is performed on every field).

Environments.

The foregoing static semantics uses abstract heaps, called environments Γ, which map names
to type values or to flattened record types. There are two basic operations on environments:
one for sequential composition – the update ΓrΓ1s – and one for parallel composition – the
merge Γ` Γ1. They are defined as follows

ΓrΓ1spaq “

$

’

’

’

’

&

’

’

’

’

%

Γpaq if a P dompΓqzdompΓ1q
Γ1paq if a P dompΓ1qzdompΓq

pr¨ ¨ ¨ , fhi\h1
i

i : τ 1i , ¨ ¨ ¨ s, Cq if Γpaq “ pr¨ ¨ ¨ , fhi
i : τi, ¨ ¨ ¨ s, Cq

and Γ1paq “ pr¨ ¨ ¨ , fh1
i
i : τ 1i , ¨ ¨ ¨ s, Cq

pΓ` Γ1qpaq “

$

&

%

Γpaq if a P dompΓqzdompΓ1q
Γ1paq if a P dompΓ1qzdompΓq
Γpaq ` Γ1paq otherwise

XX:22 Deadlock detection of Java Bytecode

For example, let Γ “ a ÞÑ prfh : bs, Cq and Γ1 “ a ÞÑ prfw : cs, Cq. Then ΓrΓ1s “ a ÞÑ prfw :
cs, Cq, which is the standard update of an environment plus the recording of the writing
operation, while Γ ` Γ1 “ a ÞÑ prfw : Js, Cq, namely the field value is undefined because a
race condition on the field f of a caused by the parallel execution of two threads. (This case
was not possible in Section 4 because of the restriction that fields are read-only.)

In the following we will also use record types with fields labelled with accesses. We will
range over them with ρ, ρ1, ¨ ¨ ¨ and the syntax is

ρ ::“ J | int | X | parfh : ρs, Cq .

The operation ` is extended to record types as follows

ρ` ρ1
def
“

$

&

%

par¨ ¨ ¨ , fh : ϑf ` fh1 : ϑ1f, ¨ ¨ ¨ s, Cq if ϑ “ par¨ ¨ ¨ , fh : ϑf, ¨ ¨ ¨ s, Cq
and ϑ1 “ par¨ ¨ ¨ , fh1 : ϑ1f, ¨ ¨ ¨ s, Cq

J if rootpϑq ‰ rootpϑ1q

Finally, in the following we will use an extension of method record type that also contain
the set of threads that have been joined by the method. Therefore, a behavioural class table
bct is a map from pairs C.m to method types, which are terms

pρ̄, t, aq Ñ pν a1qxρ,T ,R,K, ρ1, `y

where all the element are as in Section 4, except for K, which is new. This set contains
thread names that occur in the arguments (in ρ̄) and that have been synchronized within the
body of C.m. Correspondingly, we redefine

Ů

as the commutative and associative operator
defined by

pρ, Zi,Ti,Ri,Ki,Γiq
Ů

H
def
“ pρ, Zi,Ti,Ri,Ki,Γiq

pρ, Zi,Ti,Ri,Γiq
Ů

pρ, Zi,Tj ,Rj ,Kj ,Γjq
def
“ p ρ, Zi,Ti YTj ,Ri YRj ,Ki XKj ,Γi ` Γj q

(
Ů

is only defined on tuples with the elements ρ and Zi equal). We observe that the operation
Ů

when applied to sets K returns their intersection.

C.2 Run-time typing
In the run-time typing rule we use environments that are sequences of sequences of envir-
onments used at static time. For example we may have pΓ1,1 ¨ ¨ ¨Γ1,nq ¨ pΓ2,1 ¨ ¨ ¨Γ2,mq (we
remind that Γi,j are vectors of maps, which are indexed by addresses. With an abuse of
notation, we will range over run-time environments with Γ,Γ1, ¨ ¨ ¨ . Whenever Γ is a run-time
environment and we write x P dompΓq we mean that there is a map in Γ such that x belongs
to the domain of the map. If we write Γpoq “ prfh1

1 : τ1, ¨ ¨ ¨ , fhi
i : τi, ¨ ¨ ¨ , fhn

n : τns, Cq we
mean that o P dompΓq and every map γ in Γ such that o P dompγq satisfies γpoq “ prfh1

1 :
τ1, ¨ ¨ ¨ , fhi

i : τi, ¨ ¨ ¨ , fhn
n : τns, Cq.

§ Definition 4 (Γ-H Agreement). An environment Γ agrees with a heap H , written Γ « H if

o P dompH q implies o P dompΓq and
H poq.class “ C and H poq.fi ÞÑ vi, for i P 1..n, imply Γpoq “ prfh1

1 : τ1, ¨ ¨ ¨ , fhi
i :

τi, ¨ ¨ ¨ , fhn
n : τns, Cq, where, if vi is an object name, then vi “ τi.

§ Definition 5 (S/F/Z-Agreements). Given Γ, we define the following agreements between
the static environments S, F and Z and the corresponding dynamic ones s, f , and z (Γ is
always omitted in the notation).

A. Garcia and C. Laneve XX:23

Method invocations

P ris “ invokevirtual C.m pT0, ¨ ¨ ¨ , Tkq i` 1 P dompP q Si “ τk ¨ ¨ ¨ τ0 ¨ S
1

typeof pΓi, τ0q “ C mk_treepΓi, pτ0, ¨ ¨ ¨ , τkqq “ pρ0, ¨ ¨ ¨ , ρkq

b “ namespiq bX varpρ0, ¨ ¨ ¨ , ρk, t, rZisq “ H

bctpC.mqpρ0, ¨ ¨ ¨ , ρk, t, rZisqpbq “ xρ,T 1,R1,K1, pρ10, ¨ ¨ ¨ , ρ
1
kq, `y

Γi`1 “ Γirenvpϑq ` p
Ř

iP0..k envpρ1iqqs
Si`1 “ rootpρq ¨ S1 Fi`1 “ Fi Zi`1 “ Zi Ki`1 “ Ki YK

1

Ti`1,Ri`1 “

"

pTizK
1
q Y T 1, pRizK

1
q YR1 if i is not recursive and pTi YRiq X pT

1
YR1q “ H

TizK
1, pRizK

1
q YR1 Y T 1 otherwise

bct,Γ, F, S, Z,T ,R,K, i $t P : C.mpρ0, ¨ ¨ ¨ , ρk, t, rZisq Ñ ρ

P ris “ start C i` 1 P dompP q Si “ t1 ¨ Si`1
typeof pΓi, t

1
q “ C mk_treepΓi, t

1
q “ ρ

b “ namespiq bX varpρ, t1, lockt1 q “ H

bctpC.runqpρ, t1, lockt1 qpbq “ xvoid,T 1,R1,K1, ρ1, `y
Γi`1 “ Γi ` envpρ1q Fi “ Fi`1 Zi “ Zi`1 Ki`1 “ Ki YK

1

Ti`1,Ri`1 “

$

&

%

Ti Y tτu Y T 1, Ri YR1 if i is not recursive
and τ R Ti YRi

Ti, Ri YR1 Y T 1
Y tτu otherwise

bct,Γ, F, S, Z,T ,R,K, i $t P : 0

P ris “ join C i` 1 P dompP q Si “ t1 ¨ Si`1
typeof pΓi, t

1
q “ C mk_treepΓi, t

1
q “ ρ

joinedpC.run, ρ, t1, lockt1 q “ K1 Γi`1 “ Γi Fi “ Fi`1

Zi “ Zi`1 Ki`1 “

"

Ki YK
1 if τ P Ti YRi

Ki YK
1
Y tτu if τ R Ti YRi

Ti`1 “ pTizK
1
qztt1u Ri`1 “ pRizK

1
qztt1u

bct,Γ, F, S, Z,T ,R,K, i $t P : prZis, lockt1qt

Locking instructions

P ris “ monitorenter i` 1 P dompP q
Γi`1 “ Γi Fi “ Fi`1 Si “ a ¨ Si`1

Zi`1 “ a ¨ Zi Ki “ Ki`1 Ti “ Ti`1 Ri “ Ri`1

bct,Γ, F, S, Z,T ,R,K, i $t P : 0

P ris “ monitorexit i` 1 P dompP q
Γi`1 “ Γi Fi “ Fi`1 Si “ a ¨ Si`1

Zi`1 “ Ziza Ki “ Ki`1 Ti “ Ti`1 Ri “ Ri`1

bct,Γ, F, S, Z,T ,R,K, i $t P : 0

Object manipulation instructions

P ris “ new C i` 1 P dompP q a “ namespiq fieldspCq “ f̄ Γi`1 “ Γira ÞÑ prf : Js, Cqs
Fi “ Fi`1 Si`1 “ a ¨ Si Zi “ Zi`1 Ki “ Ki`1 Ti “ Ti`1 Ri “ Ri`1

bct,Γ, F, S, Z,T ,R,K, i $t P : yTi N |Ri N ŇZi
t

P ris “ putfield C.f : T i` 1 P dompP q
Si “ τ ¨ a ¨ Si`1 Γipaq “ rfh : τ 1, fh : τ 1s

Γi`1 “ Γira ÞÑ rfw : τ, fh : τ 1ss Fi “ Fi`1
Ki “ Ki`1 Zi “ Zi`1 Ti “ Ti`1 Ri “ Ri`1

bct,Γ, F, S, Z,T ,R,K, i $t P : 0

P ris “ getfield C.f : T i` 1 P dompP q
Si “ a ¨ S1 Γipaq “ rfh : τ, fh : τ s
Γi`1 “ Γira ÞÑ rfh\r : τ, fh : τ ss

Si`1 “ τ ¨ S1 Fi “ Fi`1 Zi “ Zi`1
Ki “ Ki`1 Ti “ Ti`1 Ri “ Ri`1

bct,Γ, F, S, Z,T ,R,K, i $t P : 0

Method definitions

bctpC.mq “ pρ0, ¨ ¨ ¨ , ρk, t, aq Ñ pνa1qxρ,T 1,R1,K1, ρ1, `y
F1 “ FJr0 ÞÑ rootpρ0q, ¨ ¨ ¨ , k ÞÑ rootpρkqs

Γ1 “
Ř

iP0..k envpρiq

S1 “ ε Z1 “ a T1 “ H R1 “ H K1 “ H
´

bct,Γ, F, S, Z,T ,R,K, i $t P : `i ; Ψi

¯iPdompP q

` “
ř

iPdompP q `i N yTi N |Ri N ŊZi
t

Ů

iPdompP qΨi “ pρ, a,T
1,R1,K1,Γ1q

ρ1 “ mk_treepΓ1, prootpρ0q, ¨ ¨ ¨ , rootpρkqqq

a1 “ fnpρ,T 1,R1,K1, ρ1qz fnpρ0, ¨ ¨ ¨ , ρk, t, aq

bct $ T C.m pT1, ¨ ¨ ¨ , Tkq P

bctpC.mq “ pa1rf : ρs, ρ1, ¨ ¨ ¨ , ρk, t, aq Ñ pνa2qxρ,T 1,R1,K1, ρ1, `y
F1 “ FJr0 ÞÑ a1, 1 ÞÑ rootpρ1q, ¨ ¨ ¨ , k ÞÑ rootpρkqs

Γ1 “ envpa1rf : ρsq ‘ p
À

jP1..k envpρjqq

S1 “ ε Z1 “ a1 ¨ a T1 “ H R1 “ H K1 “ H
´

bct,Γ, F, S, Z,T ,R,K, i $t P : `i ; Ψi

¯iPdompP q

` “
ř

iPdompP q `i N yTi N |Ri N ŊZi
t

Ů

iPdompP qΨi “ pρ, a
1
¨ a,T 1,R1,K1,Γ1q

ρ1 “ mk_treepΓ1, pa1, rootpρ1q, ¨ ¨ ¨ , rootpρkqqq

a2 “ fnpρ,T 1,R1,K1, ρ1qz fnpa1rf : ρs, ρ1, ¨ ¨ ¨ , ρk, t, aq

bct $ synchronized T C.m pT0, ¨ ¨ ¨ , Tkq P

Figure 8 Type rules for JVMLd programs – extension of those in Figure 3

XX:24 Deadlock detection of Java Bytecode

S-agreement.

ε « ε,
τ ¨ S « ‚ ¨ s , if S « s,
τ ¨ S « v ¨ s , if S « s and Γpvq “ χ.

F-agreement.

H « H,
F rx ÞÑ τ s « f rx ÞÑ vs , if F «Γ f and Γpvq “ τ .

Z-agreement.

ε « ε,
o ¨ Z « o ¨ z if Z « z

Let εza “ ε and

po ¨ zqza “

"

z if o “ a

o ¨ pzzaq otherwise

Let also zzpa ¨ z1q be pzzaqzz1.

§ Definition 6 (Reachable instructions set). Let reachablepP, iq, called the set of addresses
reachable from the instruction i P dompP q, be the least set satisfying the following equations:

reachablepP, iq “ H if P ris “ return
reachablepP, iq “ tLu Y reachablepP,Lq if P ris “ goto L
reachablepP, iq “ ti` 1, Lu Y reachablepP, i` 1q Y reachablepP,Lq if P ris “ if L
reachablepP, iq “ ti` 1u Y reachablepP, i` 1q otherwise

In order to type configurations, we need to introduce some notation. We will use sequences
of elements T , R and K that we will address by using the same notation. The h-th element
of the sequence T will be noted T phq. Let P be a sequence of elements whose h-th, noted
Pphq, is

´

pF p1,hq, Sp1,hqq ¨ ¨ ¨ pF pnh,hq, Spnh,hqq, Zphq
¯

.
The typing judgement for configurations is

P,bct,Γ,P,T ,R,K $ p,H C q : `

that is defined by the following two rules:

(t-conf-and)
´

P,bct,Γphq,Pphq,T phq,Rphq,Kphq $ xϕh, zhyth : `h

¯hP1..n
Γ « H

P,bct,Γ,P,T ,R,K $

´

,H xϕ1, z1yt1 ¨ ¨ ¨ xϕn, znytn

¯

: NiP1..n`i

(t-conf-single)
´

bct,Γ1, F 1, S1, Z1,T 1,R1,K1, i $t P rC.ms : `i; Ψi `1i “ `i N zT 1
i N |R1i N ŊZ1i

t
¯iPreachablepP rC.ms,pcC.mq

Z1pcC.m “ a1 ¨ a P,bct,Γ,P 1,T ,R,K $ xϕ, zza1 yt : `
P 1

“

´

pF p1q, Sp1qq ¨ ¨ ¨ pF pnq, Spnqq, Z
¯

P “

´

pF 1, S1q ¨ pF p1q, Sp1qq ¨ ¨ ¨ pF pnq, Spnqq, Z1 ¨ Z
¯

Z1pcC.m ¨ Z « z S1pcC.m « s F 1pcC.m « f

P,bct,Γ1 ¨ Γ,P,T 1
¨ T ,R1 ¨R,K1 ¨K $ xppcC.m, f , sq ¨ ϕ, zyt :

ř

iPreachablepP rC.ms,pcC.mq `
1
i ` `

A. Garcia and C. Laneve XX:25

C.3 Subject Reduction
§ Lemma 7. Let C.m be a method of a JVMLd program. If

bctpC.mqpρ, t, aq “ pν a1qxρ,T ,R,K, ρ1, `y .

then
´

bct,Γ, F, S, Z,T ,R,K, i $t P rC.ms : `i ; Ψi `1i “ `i N yTi N |Ri N ŇZi
t
¯iPreachablepP rC.ms,1C.m

q

,

where

F1 “ FJr0 ÞÑ rootpρ0q, ¨ ¨ ¨ , k ÞÑ rootpρkqs,
Γ1 “

Ř

iP0..k envpρiq,
S1 “ ε,

Z1 “ A, pif C.m is synchronized A “ rootpρ0q ¨ a, otherwise A “ aq

T1 “ H,

R1 “ H,

K1 “ H,

` ě
ř

iPreachablepP rC.ms,1C.mq `
1
i,

Ů

iPreachablepP rC.ms,1C.mqΨi “ pρ,A,T 1,R1,K 1,Γ1q, T 1 Ď T , R1 Ď R, K 1 Ě K

ρ1 “ mk_treepΓ1, prootpρ0q, ¨ ¨ ¨ , rootpρkqqq, and
a1 Ě fnpρ,T 1,R1,K 1, ρ1qz fnpρ0, ¨ ¨ ¨ , ρk, t, aq.

§ Theorem 8 (Subject Reduction). If P,bct,Γ,P,T ,R,K $ p,H C q : ` and Γ « H
and ,H C Ñ,H1 C 1, then there exists `1 and Γ1, P 1, T 1,R1,K 1 such that Γ1 « H 1 and
P,bct,Γ1,P 1,T 1,R1,K 1 $ p,H 1 C 1q : `1 and ` ě `1 .

Proof. (Sketch) By case analysis on the last reduction rule used.

Case pop. We have P,bct,Γ,P,T ,R,K $ p,H xppcC.m, f , v ¨ sq ¨ ϕ, zytq : ` and

(s-pop)
P rpcC.m

s “ pop

P ,H xppcC.m, f , v ¨ sq ¨ ϕ, zyt Ñ,H xppcC.m
` 1, f , sq ¨ ϕ, zyt

By the configuration typing rules, we get
´

bct,Γ1, F 1, S1, Z 1,T 1,R1,K 1, i $t P rC.ms : `i `1i “ `i N zT 1
i N |R1

i N ŇZ 1i
t
¯iPreachablepP rC.ms,pcC.m

q

P,bct,Γ2,P2,T 2,R2,K2 $ xϕ, zyt : `ϕ P2 “

´

pF 2, S2q, Z2
¯

Z 1pcC.m “ a1 ¨ a a1 ¨ Z2 « z S1pcC.m « v ¨ s F 1pcC.m « f

From pbct,Γ1, F 1, S1, Z 1,T 1,R1,K 1, i $t P rC.ms : `iqiPreachablepP rC.ms,pcC.m
q and Definition 6 we

derive that
bct,Γ1, F 1, S1, Z 1,T 1,R1,K 1, pcC.m $t P rC.ms : `pcC.m

and
`

bct,Γ1, F 1, S1, Z 1,T 1,R1,K 1, i $t P rC.ms : `i
˘iPreachablepP rC.ms,pcC.m

`1q
.

Therefore ` “ `1pcC.m ` p
ř

iPreachablepP rC.ms,pcC.m`1q `
1
iq ` `ϕ. By the typing rule for pop: S1pcC.m “

τ ¨ S1pcC.m`1; therefore, since S1pcC.m « v ¨ s then S1pcC.m`1 « s, by Definition 5.
We can apply again the configuration typing rules and we obtain `1 “ p

ř

iPreachablepP rC.ms,pcC.m`1q `
1
iq`

`ϕ, thus ` ě `1.

XX:26 Deadlock detection of Java Bytecode

Case invokevirtual. We have P,bct,Γ,P,T ,R,K $ p,H xppcC.m, f , vn ¨ ¨ ¨ ¨ ¨ v1 ¨

o ¨ sq ¨ ϕ, zytq : ` and one of three operational rules may have been applied: (s-invk),
(s-invk-synch-0), or (s-invk-synch-n). Let us consider the former:

(s-invk)
P rpcC.m

s “ invokevirtual D.m1pT1, . . . , Tnq

synchronized R modpD.m1q

P ,H xppcC.m, f1, vn ¨ ¨ ¨ ¨ ¨ v1 ¨ o ¨ s1q ¨ ϕ, zyt Ñ
,H xp1D.m1

, f2r0 ÞÑ o, 1 ÞÑ v1, . . . , n ÞÑ vns, εq ¨ ppcC.m
` 1, f1, ‚ ¨ s1q ¨ ϕ, zyt

By the configuration typing rules, we get
´

bct,Γ1, F 1, S1, Z 1,T 1,R1,K 1, i $t P rC.ms : `i `1i “ `i N zT 1
i N |R1

i N ŇZ 1i
t
¯iPreachablepP rC.ms,pcC.m

q

P,bct,Γ2,P2,T 2,R2,K2 $ xϕ, zyt : `ϕ P2 “

´

pF 2, S2q, Z2
¯

Z 1pcC.m “ a1 ¨ a a1 ¨ Z2 « z S1pcC.m « vn ¨ ¨ ¨ ¨ ¨ v1 ¨ o ¨ s F 1pcC.m « f

From pbct,Γ1, F 1, S1, Z 1,T 1,R1,K 1, i $t P rC.ms : `iqiPreachablepP rC.ms,pcC.m
q and Definition 6 we

derive that

bct,Γ1, F 1, S1, Z 1,T 1,R1,K 1, pcC.m $t P rC.ms : `pcC.m

and
`

bct,Γ1, F 1, S1, Z 1,T 1,R1,K 1, i $t P rC.ms : `i
˘iPreachablepP rC.ms,pcC.m

`1q
.

Therefore

` “ `1pcC.m ` p
ÿ

iPreachablepP rC.ms,pcC.m`1q
`1iq ` `ϕ. (2)

We assume that C.m is recursive (this case and the one when pcC.m is inside an iteration are
the interesting cases). By (t-invk) typing rule:

`pcC.m “ D.m1pρ1, ¨ ¨ ¨ , ρn, t, rZ
1
pcC.m sq Ñ ρ,

where

S1pcC.m “ τn ¨ ¨ ¨ τ1 ¨ S
3 typeof pΓpcC.m , τ1q “ D

mk_treepΓpcC.m , pτ1, ¨ ¨ ¨ , τnqq “ pρ1, ¨ ¨ ¨ , ρnq b “ namesppcC.mq

bctpD.m1qpρ1, ¨ ¨ ¨ , ρn, t, rZ
1
pcC.m sqpbq “ xρ,T 3,R3,K3, pρ11, ¨ ¨ ¨ , ρ

1
nq, `D.m1y

ΓpcC.m`1 “ ΓpcC.mrenvpρq ` p
Ř

iP1..n envpρ1iqqs
S1pcC.m`1 “ rootpρq ¨ S3 F 1pcC.m`1 “ F 1pcC.m Z 1pcC.m`1 “ Z 1pcC.m K 1pcC.m`1 “ K 1pcC.m YK3

T 1
pcC.m`1,R

1
pcC.m`1 “ pT

1
pcC.mzK3q YT 3, pR1

pcC.mzK3q YR3

By (t-invk) typing rule, S1pcC.m “ τn ¨ ¨ ¨ τ1 ¨ S
3 and S1pcC.m`1 “ rootpρq ¨ S3 so since S1pcC.m «

vn ¨ ¨ ¨ ¨ ¨ v1 ¨ o ¨ s then S1pcC.m`1 « ‚ ¨ s.
Therefore we obtain that

P,bct,Γ1, F 1, S1, Z 1,T 1,R1,K 1 $ xppcC.m ` 1, f , ‚ ¨ sq ¨ ϕ, zyt : `pcC.m`1 (3)

where `pcC.m`1 “ p
ř

iPreachablepP rC.ms,pcC.m`1q `
1
iq ` `ϕ

By Lemma 7,
´

bct,ΓD.m1

, F D.m1

, SD.m1

, ZD.m1

,T D.m1

,RD.m1

,KD.m1

, i $t P rD.m1s : `D.m1

i ; Ψi

¯iPreachablepP rD.m1
s,1D.m1

q

,

A. Garcia and C. Laneve XX:27

where
F D.m1

1 “ F D.m1

J r0 ÞÑ rootpρ1q, ¨ ¨ ¨ , n ÞÑ rootpρnqs,
ΓD.m1

1 “
Ř

iP1..n envpρiq,
SD.m1

1 “ ε,

ZD.m1

1 “ rZ 1pcC.m s,

T D.m1

1 “ H,

RD.m1

1 “ H,

KD.m1

1 “ H,

`D.m1 ě `2, where `2 “
ř

iPreachablepP rD.m1s,1D.m1
q `
1D.m1

i N {T D.m1

i N ~RD.m1

i N Ŕ

ZD.m1

i
t
,

Ů

iPreachablepP rD.m1s,1D.m1
qΨi “ pρ, rZ

1
pcC.m s,T 1D.m1

,R1D.m1

,K 1D.m
1

,Γ1D.m1

q,

ρ1 “ mk_treepΓ1D.m1

, prootpρ1q, ¨ ¨ ¨ , rootpρnqqq, and
b “ fnpρ,T 1D.m1

,R1D.m1

,K 1D.m
1

, ρ1qz fnpρ1, ¨ ¨ ¨ , ρn, t, aq.

Thus
P,bct,ΓD.m1

¨ Γ1, F D.m1

¨ F 1, SD.m1

¨ S1, ZD.m1

¨ Z 1,T D.m1

¨T 1,RD.m1

¨R1,KD.m1

¨K 1 $

pxp1D.m1

, f 1r0 ÞÑ o, 1 ÞÑ v1, . . . , n ÞÑ vns, εq ¨ ppcC.m ` 1, f , sq ¨ ϕ, zytq : `2 ` `pcC.m`1

and ` ě `2 ` `pcC.m`1.
The last step is to prove that ΓD.m1

¨ Γ « H . This follows from Definition 4 and the fact
that Γ « H .

Case start. We have P,bct,Γ,P,T ,R,K $ p,H xppcC.m, f1, o ¨ s1q ¨ϕ, zytq : ` and then
(s-start)

P rpcC.m
s “ start D

P ,H xppcC.m, f1, o ¨ s1q ¨ ϕ, zyt Ñ,H xppcC.m
` 1, f1, s1q ¨ ϕ, zyt , xp1D.run, f2r0 ÞÑ os, εq, εyo

By the configuration typing rules, we obtain
´

bct,Γ1, F 1, S1, Z 1,T 1,R1,K 1, i $t P rC.ms : `i `1i “ `i N zT 1
i N |R1

i N ŇZ 1i
t
¯iPreachablepP rC.ms,pcC.m

q

P,bct,Γ2,P2,T 2,R2,K2 $ xϕ, zyt : `ϕ P2 “

´

pF 2, S2q, Z2
¯

Z 1pcC.m “ a1 ¨ a a1 ¨ Z2 « z S1pcC.m « o ¨ s F 1pcC.m « f

From pbct,Γ1, F 1, S1, Z 1,T 1,R1,K 1, i $t P rC.ms : `iqiPreachablepP rC.ms,pcC.m
q and Definition 6 we

derive that
bct,Γ1, F 1, S1, Z 1,T 1,R1,K 1, pcC.m $t P rC.ms : `pcC.m

and
`

bct,Γ1, F 1, S1, Z 1,T 1,R1,K 1, i $t P rC.ms : `i
˘iPreachablepP rC.ms,pcC.m

`1q
.

Therefore

` “ `1pcC.m ` p
ÿ

iPreachablepP rC.ms,pcC.m`1q
`1iq ` `ϕ. (4)

By (t-start) typing rule:

S1pcC.m “ o ¨ S1pcC.m`1
typeof pΓ1pcC.m , oq “ D mk_treepΓ1pcC.m , oq “ ρ b “ namesppcC.mq

bctpD.runqpρ, o, lockoqpbq “ xvoid,T 3,R3,K3, ρ1, `y

Γ1pcC.m`1 “ Γ1pcC.m ` envpρ1q F 1pcC.m “ F 1pcC.m`1 Z 1pcC.m “ Z 1pcC.m`1 K 1pcC.m`1 “ K 1pcC.m

TpcC.m`1,RpcC.m`1 “

$

&

%

TpcC.m Y tou YT 3, RpcC.m YR3 if i is not recursive
and o R TpcC.m YRpcC.m

TpcC.m , RpcC.m YR3 YT 3 Y tou otherwise

XX:28 Deadlock detection of Java Bytecode

Let S1pcC.m « o ¨ s1; then S1pcC.m`1 « s1. Therefore we obtain that

P,bct,Γ1 ¨ Γ2,P 1,T 1 ¨T 2,R1 ¨R2,K 1 ¨K2 $ xppcC.m ` 1, f1, s1q ¨ ϕ, zyt : `pcC.m`1 (5)

where P 1 “

´

pF 1, S1q ¨ pF 2, S2q, a1 ¨Z2
¯

and `pcC.m`1 “ p
ř

iPreachablepP rC.ms,pcC.m`1q `
1
iq` `ϕ. By

Lemma 7,
´

bct,ΓD.run, F D.run, SD.run, ZD.run, T D.run,KD.run, i $t P rD.runs : `D.run
i ; Ψi

¯iPreachablepP rD.runs,1D.run
q

,

where

F D.run
1 “ F D.run

J r0 ÞÑ rootpρqs,
ΓD.run

1 “ envpρq,
SD.run

1 “ ε,

ZD.run
1 “ rZ 1pcC.m s,

T D.run
1 “ H,

RD.run
1 “ H,

KD.run
1 “ H,

`D.run “
ř

iPreachablepP rD.runs,1D.runqp`
D.run
i N {T D.run

i N RD.run
i N Ŕ

ZD.run
i

t
q,

Ů

iPreachablepP rD.runs,1D.runqΨi “ pvoid, rZ 1pcC.m s,T 1D.run,R1D.run,K 1D.run,Γ1D.runq,

ϑ “ mk_treepΓ1D.run, oq,

b “ fnpvoid,T 1D.run,R1D.run,K 1D.run, ϑqz fnpρ, o, lockoq.

Thus, let P3 “ P 1 ¨ ppF D.run, SD.runq, ZD.run
1 q, then

P,bct, pΓ1 ¨ Γ2q ¨ ΓD.run,P3, pT 1 ¨T 2q ¨T D.run, pR1 ¨R2q ¨RD.run, pK 1 ¨K2q ¨KD.run $

p,H xppcC.m ` 1, f1, s1q ¨ ϕ, zyt , xp1D.run, f2r0 ÞÑ os, εq, εyoq : `D.runN`pcC.m`1.

and ` ě `D.runN`pcC.m`1. The last step, namely pΓ1 ¨ Γ2q ¨ ΓD.run « H , is similar to the previous
case.

Case return. We have

P,bct,Γ,P,T ,R,K $ p,H xppcC.m, f1, v ¨ s1q ¨ ppcD.m, f2, ‚ ¨ s2q ¨ ϕ, zytq : `

The following rules may have been applied: (s-return), (s-return-run), (s-return-
synch-0), and (s-return-synch-n). Let us consider the first one (the other ones are
similar).

(s-return)
P rpcC.m

s “ return synchronized R modpC.mq

P ,H xppcC.m, f1, v ¨ s1q ¨ ppcD.m, f2, ‚ ¨ s2q ¨ ϕ, zyt Ñ,H xpcD.m, f2, v ¨ s2q ¨ ϕ, zyt

By the configuration typing rules, we have
´

bct,Γ1, F 1, S1, Z 1,T 1,R1,K 1, i $t P rC.ms : `i `1i “ `i N zT 1
i N |R1

i N ŇZ 1i
t
¯iPreachablepP rC.ms,pcC.m

q

P,bct,Γ2,P2,T 2,R2,K2 $ xppcD.m, f2, ‚ ¨ s2q ¨ ϕ, zyt : `ϕ P2 “

´

pF 2, S2q, Z2
¯

Z 1pcC.m “ a1 ¨ a a1 ¨ Z2 « z S1pcC.m « v ¨ s1 F 1pcC.m « f1

Therefore

` “ p
ÿ

iPreachablepP rC.ms,pcC.mq

`1iq ` p
ÿ

iPreachablepP rD.ms,pcD.mq

`1iq ` `ϕ (6)

A. Garcia and C. Laneve XX:29

Moreover, S2pcD.m1 « ‚ ¨ s2 and S2pcD.m1 has been set while typing the invocation of C.m as
S2pcD.m1 “ rootpθq ¨ S3, where rootpθq is the value returned by the method invocation, then
S2pcD.m1 « v ¨ s2.

Therefore we obtain

`1 “ p
ÿ

iPreachablepP rD.ms,pcD.mq

`1iq ` `ϕ (7)

then ` ě `1.

Case new. We have

P,bct,Γ,P,T ,R,K $ p,H xppcC.m, f , sq ¨ ϕ, zytq : `

and

(s-new)
P rpcC.m

s “ new D o R dompH q H 1 “ H ro ÞÑ pρD, Dqs

P ,H xppcC.m, f , sq ¨ ϕ, zyt Ñ,H 1 xppcC.m
` 1, f , o ¨ sq ¨ ϕ, zyt

By the configuration typing rules, we get
´

bct,Γ1, F 1, S1, Z 1,T 1,R1,K 1, i $t P rC.ms : `i `1i “ `i N zT 1
i N |R1

i N ŇZ 1i
t
¯iPreachablepP rC.ms,pcC.m

q

P,bct,Γ2,P2,T 2,R2,K2 $ xϕ, zzZ2yt : `ϕ P2 “

´

pF 2, S2q, Z2
¯

Z 1pcC.m “ a1 ¨ a a1 ¨ Z2 « z S2pcC.m « s F 2pcC.m « f

Therefore

` “ p
ÿ

iPreachablepP rC.ms,pcC.mq

`1iq ` `ϕ (8)

From pbct,Γ1, F 1, S1, Z 1,T 1,R1,K 1, i $t P rC.ms : `iqiPreachablepP rC.ms,pcC.m
q and Definition 6 we

derive that

bct,Γ1, F 1, S1, Z 1,T 1,R1,K 1, pcC.m $t P rC.ms : `pcC.m

and
`

bct,Γ1, F 1, S1, Z 1,T 1,R1,K 1, i $t P rC.ms : `i
˘iPreachablepP rC.ms,pcC.m

`1q
.

Therefore ` “ `1pcC.m ` p
ř

iPreachablepP rC.ms,pcC.m`1q `
1
iq ` `ϕ.

By these hypotheses, it is easy to show the existence of Γ3, P 1, T 2, R2, K2 and `2

such that Γ3 « H 1 and P,bct,Γ3,P 1,T 2,R2,K2 $ p,H 1 xppcC.m ` 1, f , o ¨ sq ¨ ϕ, zytq : `1.
In particular, assuming fieldspDq “ f, it is sufficient to let Γ3 “ Γ1ro ÞÑ prf : Js, Dqs ¨ Γ2 and
S2pcC.m`1 “ o ¨ S2pcC.m .

In this case, it is not evident that ` ě `1. Actually, by the typing rule for new, the new
name is a symbolic name returned by the function namesppcC.mq, let it be a. Therefore,
Γ1pcC.m`1 “ Γ1pcC.mra ÞÑ prf : T s, Dqs, and S1pcC.m`1 “ a ¨ S2pcC.m . However, we cannot assume that
a “ o because it may be already “in use” – this is the case when C.m is either recursive or
pcC.m is inside an iteration.

There are two cases: (i) D is not a subclass of Thread and (ii) D is a subclass of Thread. In
case (i) it easy to verify that ` ě `1ta{ou ě `1. In case (ii) we may have `1 “ pb, cqa N pc, bqo.

XX:30 Deadlock detection of Java Bytecode

When `1 has such a value, we have `1ta{ou ě `1 because the name o may appear as index
of a dependency pair. In such situation, pb, cqa N pc, bqo is a circular dependency, while
`1ta{ou “ pb, cqa N pc, bqa is not – see Sections 5 and C.

To solve this criticality, whenever a new thread is created – either because a start is
executed or because it is returned by a method invocation, cf. the sets T and R – we verify
whether we are inside a recursion or an iteration, which are the two cases when namesppcC.mq

may return a name that already exists. In these two cases, the name a is added to the set
R instead of T . As a consequence, the lam `1 will contain terms RUNpporf : ρs, Dqq while,
correspondingly, ` will contain terms RUNpporf : ρs, Dqqta{ou. However, since

RUNpporf : ρs, Dqq “ D.runpporf : ρs, Dq, o, lockoq N pν o1q RUNppo1rf : ρs, Dqq ,

replacing o in RUNpporf : ρs, Dqq with any other object name does not change the circularity
predicate (because the function is unfolded in a lam that has an invocation of the same
function on a fresh name in parallel). Therefore, it is possible to derive `ta{tu ě `. đ

C.4 Deadlocks and circularities
To conclude the proof of correctness we need to bridge the gap between the notion of deadlock
in JVM and the notion of circularity in a lam program.

§ Definition 9. A JVM configuration ,H xϕ1, z1yt1 ¨ ¨ ¨ xϕn, znytn is deadlocked if there are
i1, ¨ ¨ ¨ , ik P 1..n such that, for every j P ti1, ¨ ¨ ¨ , iku one of the following holds

ϕj “ ppcj , fj , sjq ¨ ϕ1j and P rpcjs “ monitorenter and sj “ a ¨ s1j and a P zh with
h P ti1, ¨ ¨ ¨ , ikuzj;
ϕj “ ppcj , fj , sjq ¨ ϕ1j and P rpcjs “ join and sj “ th ¨ s

1
j with h P ti1, ¨ ¨ ¨ , iku.

The following statement is a straightforward consequence of the definitions.

§ Proposition 10. Let ,H C be deadlocked and let P,bct,Γ, F, S, Z,T ,R,K $ p,H C q : `.
Then ` has a circularity.

§ Theorem 11. Let P be a JVMLd program and Γ « H , F «Γ fKr0 ÞÑ mains, S «Γ ε, and
Z «Γ ε. If

1. P,bct,Γ,P,T ,R,K $ p,H xp1C.main, fKr0 ÞÑ mains, εq, εymainq : `
2. and ,H xp1C.main, fKr0 ÞÑ mains, εq, εymain Ñ

˚ ,H 1 C 1

3. and ,H 1 C 1 is deadlocked

then ` has a circularity.

Proof. The proof is an immediate consequence of the previous results. By 1 and 2 and
Theorem 8 we have the existence of `1 and Γ1, P 1, T 1,R1,K 1 such that Γ1 « H 1 and
P,bct,Γ1,P 1,T 1,R1,K 1 $ p,H 1 C 1q : `1 and ` ě `1. By 3 and Proposition 10, we have that
`1 has a circularity. By ` ě `1 and Lemma 10, we have that ` has a circularity as well. đ

	Introduction
	Overview of JVML and of our technique
	The language JVMLd
	The static semantics
	The analysis of circularities in lams
	Intermezzo: correctness results
	Related Work and JaDA
	Conclusions
	The full JVMLd
	JVMLd and its operational semantics
	Correctness
	Static-time typing
	Run-time typing
	Subject Reduction
	Deadlocks and circularities

